The C++
Standard Library

A Tutorial and Reference

Study & Certification W

Programming | Language | C++

The C++ Standard Library

C++ Standard Library, The: A Tutorial and Reference

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book and Addison Wesley
Longman Inc., was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more
information, please contact:

AWL Direct Sales

Addison Wesley Longman, Inc
One Jacob Way

Reading, Massachusetts 01867
(781) 944-3700

Visit AW on the Web: www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data

Josuttis, Nicolai M.

The C++ standard library: a tutorial and reference / Nicolai M. Josulttis.
p. cm.

Includes bibliographical references and index.

1. C++ (Computer program language) I. Title.

QA76.73.C153J69 1999

005.13'3--dc21 99-24977

CIP

Copyright © 1999 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher. Printed in the United States of America.
Published simultaneously in Canada.

123456789-CRW-0302010099

First printing, July 1999

dyne-book 2

The C++ Standard Library

Table of Contents

Preface
Acknowledgments

1. About this Book
1.1 Why this Book
1.2 What You Should Know Before Reading this Book
1.3 Style and Structure of the Book
1.4 How to Read this Book
1.5 State of the Art
1.6 Example Code and Additional Information
1.7 Feedback
2. Introduction to C++ and the Standard Library
2.1 History
2.2 New Language Features
2.3 Complexity and the Big-O Notation

3. General Concepts
3.1 Namespace std
3.2 Header Files
3.3 Error and Exception Handling
3.4 Allocators

4. Utilities
4.1 Pairs
4.1.1 Convenience Function make pair()
4.1.2 Examples of Pair Usage
4.2 Class auto ptr
4.3 Numeric Limits
4.4 Auxiliary Functions
4.5 Supplementary Comparison Operators
4.6 Header Files <cstddef> and <cstdlib>

5. The Standard Template Library
5.1 STL Components
5.2 Containers
5.3 Iterators
5.4 Algorithms
5.5 Iterator Adapters
5.6 Manipulating Algorithms
5.7 User-Defined Generic Functions
5.8 Functions as Algorithm Arguments
5.9 Function Objects
5.10 Container Elements
5.1
5.1

1 Errors and Exceptions Inside the STL
2 Extending the STL

6. STL Containers
6.1 Common Container Abilities and Operations
6.2 Vectors

6.3 Deques

dyne-book

The C++ Standard Library

6.4 Lists

6.5 Sets and Multisets

6.6 Maps and Multimaps

6.7 Other STL Containers

6.8 Implementing Reference Semantics

6.9 When to Use which Container

6.10 Container Types and Members in Detail

7. STL Iterators
7.1 Header Files for Iterators
7.2 Iterator Categories
7.3 Auxiliary Iterator Functions
7.4 Iterator Adapters
7.5 Iterator Traits

8. STL Function Objects
8.1 The Concept of Function Objects
8.2 Predefined Function Objects
8.3 Supplementary Composing Function Objects

9. STL Algorithms
9.1 Algorithm Header Files
9.2 Algorithm Overview
9.3 Auxiliary Functions
9.4 The for each() Algorithm
9.5 Nonmodifying Algorithms
9.6 Modifying Algorithms
9.7 Removing Algorithms
9.8 Mutating Algorithms
9.9 Sorting Algorithms
9.10 Sorted Range Algorithms
9.11 Numeric Algorithms

10. Special Containers
10.1 Stacks
10.2 Queues
10.3 Priority Queues
10.4 Bitsets

11. Strings
11.1 Motivation

11.2 Description of the String Classes
11.3 String Class in Detail

12. Numerics
12.1 Complex Numbers
12.2 Valarrays
12.3 Global Numeric Functions

13. Input/Output Using Stream Classes
13. Input/Output Using Stream Classes
13.1 Common Background of I/O Streams
13.2 Fundamental Stream Classes and Objects

dyne-book

The C++ Standard Library

13.3 Standard Stream Operators << and >>
13.4 State of Streams

13.5 Standard Input/Output Functions

13.6 Manipulators

13.7 Formatting

13.8 Internationalization

13.9 File Access

13.10 Connecting Input and Output Streams
13.11 Stream Classes for Strings

13.12 Input/Output Operators for User-Defined Types
13.13 The Stream Buffer Classes

13.14 Performance Issues

14. Internationalization
14.1 Different Character Encodings
14.2 The Concept of Locales
14.3 Locales in Detail
14.4 Facets in Detail

15. Allocators
15.1 Using Allocators as an Application Programmer
15.2 Using Allocators as a Library Programmer
15.3 The Default Allocator
15.4 A User-Defined Allocator
15.5 Allocators in Detail
15.6 Utilities for Uninitialized Memory in Detail

Internet Resources
Where You Can Get the Standard
Internet Addresses/URLs

Bibliography

dyne-book

The C++ Standard Library

Preface

In the beginning, | only planned to write a small German book (400 pages or so) about the C++
standard library. That was in 1993. Now, in 1999 you see the result — an English book with more
than 800 pages of facts, figures, and examples. My goal is to describe the C++ standard library
so that all (or almost all) your programming questions are answered before you think of the
question. Note, however, that this is not a complete description of all aspects of the C++ standard
library. Instead, | present the most important topics necessary for learning and programming in
C++ by using its standard library.

Each topic is described based on the general concepts; this discussion then leads to the specific
details needed to support every-day programming tasks. Specific code examples are provided to
help you understand the concepts and the details.

That's it — in a nutshell. | hope you get as much pleasure from reading this book as | did from
writing it. Enjoy!

dyne-book 6

The C++ Standard Library

Acknowledgments

This book presents ideas, concepts, solutions, and examples from many sources. In a way it
does not seem fair that my name is the only name on the cover. Thus, I'd like to thank all the
people and companies who helped and supported me during the past few years.

First, I'd like to thank Dietmar Kihl. Dietmar is an expert on C++, especially on input/output
streams and internationalization (he implemented an I/O stream library just for fun). He not only
translated major parts of this book from German to English, he also wrote sections of this book
using his expertise. In addition, he provided me with invaluable feedback over the years.

Second, I'd like to thank all the reviewers and everyone else who gave me their opinion. These
people endow the book with a quality it would never have had without their input. (Because the
list is extensive, please fogive me for any oversight.) The reviewers for the English version of this
book included Chuck Allison, Greg Comeau, James A. Crotinger, Gabriel Dos Reis, Alan Ezust,
Nathan Meyers, Werner Mossner, Todd Veldhuizen, Chichiang Wan, Judy Ward, and Thomas
Wikehult. The German reviewers included Ralf Boecker, Dirk Herrmann, Dietmar Kihl, Edda
Lorke, Herbert Scheubner, Dominik Strasser, and Martin Weitzel. Additional input was provided
by Matt Austern, Valentin Bonnard, Greg Colvin, Beman Dawes, Bill Gibbons, Lois Goldthwaite,
Andrew Koenig, Steve Rumbsby, Bjarne Stroustrup, and David Vandevoorde.

Special thanks to Dave Abrahams, Janet Cocker, Catherine Ohala, and Maureen Willard who
reviewed and edited the whole book very carefully. Their feedback was an incredible contribution
to the quality of this book.

A special thanks goes to my "personal living dictionary" — Herb Sutter — the author of the
famous "Guru of the Week" (a regular series of C++ programming problems that is published on
the comp.std.C++.moderated Internet newsgroup).

I'd also like to thank all the people and companies who gave me the opportunity to test my
examples on different platforms with different compilers. Many thanks to Steve Adamczyk, Mike
Anderson, and John Spicer from EDG for their great compiler and their support. It was a big help
during the standardization process and the writing of this book. Many thanks to P. J. Plauger and
Dinkumware, Ltd, for their early standard-conforming implementation of the C++ standard library.
Many thanks to Andreas Hommel and Metrowerks for an evaluative version of their Code Warrior
Programming Environment. Many thanks to all the developers of the free GNU and egcs
compilers. Many thanks to Microsoft for an evaluative version of Visual C++. Many thanks to
Roland Hartinger from Siemens Nixdorf Informations Systems AG for a test version of their C++
compiler. Many thanks to Topjects GmbH for an evaluative version of the ObjectSpace library
implementation.

Many thanks to everyone from Addison Wesley Longman who worked with me. Among others
this includes Janet Cocker, Mike Hendrickson, Debbie Lafferty, Marina Lang, Chanda Leary,
Catherine Ohala, Marty Rabinowitz, Susanne Spitzer, and Maureen Willard. It was fun.

In addition, I'd like to thank the people at BREDEX GmbH and all the people in the C++
community, particularly those involved with the standardization process, for their support and
patience (sometimes | ask really silly questions).

Last but not least, many thanks and kisses for my family: Ulli, Lucas, Anica, and Frederic. |
definitely did not have enough time for them due to the writing of this book.

Have fun and be human!

dyne-book 7

The C++ Standard Library

Chapter 1. About this Book

1.1 Why this Book

Soon after its introduction, C++ became a de facto standard in object-oriented programming. This
led to the goal of standardization. Only by having a standard, could programs be written that
would run on different platforms — from PCs to mainframes. Furthermore, a standard library
would enable programmers to use general components and a higher level of abstraction without
losing portability, rather than having to develop all code from scratch.

The standardization process was started in 1989 by an international ANSI/ISO committee. It
developed the standard based on Bjarne Stroustrup's books The C++ Programming Language
and The Annotated C++ Reference Manual. After the standard was completed in 1997, several
formal motions by different countries made it an international ISO and ANSI standard in 1998.
The standardization process included the development of a C++ standard library. The library
extends the core language to provide some general components. By using C++'s ability to
program new abstract and generic types, the library provides a set of common classes and
interfaces. This gives programmers a higher level of abstraction. The library provides the ability to
use

String types

Different data structures (such as dynamic arrays, linked lists, and binary trees)
Different algorithms (such as different sorting algorithms)

Numeric classes

Input/output (I/O) classes

Classes for internationalization support

All of these are supported by a fairly simple programming interface. These components are very
important for many programs. These days, data processing often means inputting, computing,
processing, and outputting large amounts of data, which are often strings.

The library is not self-explanatory. To use these components and to benefit from their power, you
need a good introduction that explains the concepts and the important details instead of simply
listing the classes and their functions. This book is written exactly for that purpose. First, it
introduces the library and all of its components from a conceptional point of view. Next, it
describes the details needed for practical programming. Examples are included to demonstrate
the exact usage of the components. Thus, this book is a detailed introduction to the C++ library
for both the beginner and the practical programmer. Armed with the data provided herein, you
should be able to take full advantage of the C++ standard library.

Caveat:

| don't promise that everything described is easy and self-explanatory. The library provides a lot
of flexibility, but flexibility for nontrivial purposes has a price. Beware that the library has traps and
pitfalls, which | point out when we encounter them and suggest ways of avoiding them.

1.2 What You Should Know Before Reading this Book

To get the most from this book you should already know C++. (The book describes the standard
components of C++, but not the language itself.) You should be familiar with the concepts of
classes, inheritance, templates, and exception handling. However, you don't have to know all of
the minor details about the language. The important details are described in the book (the minor

dyne-book 8

The C++ Standard Library

details about the language are more important for people who want to implement the library
rather than use it). Note that the language has changed during the standardization process, so
your knowledge might not be up to date. Section 2.2, provides a brief overview and introduction
of the latest language features that are important for using the library. You should read this
section if you are not sure whether you know all the new features of C++ (such as the keyword
typename and the concept of namespaces).

1.3 Style and Structure of the Book

The C++ standard library provides different components that are somewhat but not totally
independent of each other, so there is no easy way to describe each part without mentioning
others. | considered several different approaches for presenting the contents of this book. One
was on the order of the C++ standard. However, this is not the best way to explain the
components of the C++ standard library from scratch. Another was to start with an overview of all
components followed by chapters that provided more details. Alternatively, | could have sorted
the components, trying to find an order that had a minimum of cross-references to other sections.
My solution was to use a mixture of all three approaches. | start with a brief introduction of the
general concepts and the utilities that are used by the library. Then, | describe all the
components, each in one or more chapters. The first component is the standard template library
(STL). There is no doubt that the STL is the most powerful, most complex, and most exciting part
of the library. Its design influences other components heavily. Then | describe the more self-
explanatory components, such as special containers, strings, and numeric classes. The next
component discussed is one you probably know and use already: the 10Stream library. It is
followed by a discussion of internationalization, which had some influence on the 10Stream
library.

Each component description begins with the component's purpose, design, and some examples.
Next, a detailed description follows that begins with different ways to use the component, as well
as any traps and pitfalls associated with it. The description usually ends with a reference section,
in which you can find the exact signature and definition of a component's classes and its
functions.

The following is a description of the book's contents. The first four chapters introduce this book
and the C++ standard library in general:

e Chapter 1: About this Book

This chapter (which you are reading right now) introduces the book's subject and
describes its contents.

e Chapter 2: Introduction to C++ and the Standard Library

This chapter provides a brief overview of the history of the C++ standard library and the
context of its standardization. It also contains some general hints regarding the technical
background for this book and the library, such as new language features and the concept
of complexity.

e Chapter 3: General Concepts

This chapter describes the fundamental concepts of the library that you need to
understand to work with all the components. In particular, it introduces the namespace
std, the format of header files, and the general support of error and exception handling.

e Chapter 4: Utilities

dyne-book 9

The C++ Standard Library

This chapter describes several small utilities provided for the user of the library and for
the library itself. In particular, it describes auxiliary functions such as max (), min (),
and swap (), types pair and auto_ptr, as well as numeric limits, which provide
more information about implementation-specific details of numeric data types.

Chapters 5 through 9 describe all aspects of the STL:
e Chapter 5: The Standard Template Library

This chapter presents a detailed introduction to the concept of the STL, which provides
container classes and algorithms that are used to process collections of data. It explains
step-by-step the concept, the problems, and the special programming techniques of the
STL, as well as the roles of its parts.

e Chapter 6: STL Containers

This chapter explains the concepts and describes the abilities of the STL's container
classes. First it describes the differences between vectors, deques, lists, sets, and maps,
then their common abilities, and all with typical examples. Lastly it lists and describes all
container functions in form of a handy reference.

e Chapter 7: STL Iterators

This chapter deals in detail with the STL's iterator classes. In particular, it explains the
different iterator categories, the auxiliary functions for iterators, and the iterator adapters,
such as stream iterators, reverse iterators, and insert iterators.

e Chapter 8: STL Function Objects
This chapter details the STL's function object classes.
e Chapter 9: STL Algorithms

This chapter lists and describes the STL's algorithms. After a brief introduction and
comparison of the algorithms, each algorithm is described in detail followed by one or
more example programs.

Chapters 10 through 12 describe "simple" individual standard classes:
e Chapter 10: Special Containers

This chapter describes the different special container classes of the C++ standard library.
It covers the container adapters for queues and stacks, as well as the class bitset,
which manages a bitfield with an arbitrary number of bits or flags.

e Chapter 11: Strings

This chapter describes the string types of the C++ standard library (yes, there are more
than one). The standard provides strings as kind of "self-explanatory" fundamental data
types with the ability to use different types of characters.

dyne-book 10

The C++ Standard Library

e Chapter 12: Numerics

This chapter describes the numeric components of the C++ standard library. In particular,
it covers types for complex numbers and classes for the processing of arrays of numeric
values (the latter may be used for matrices, vectors, and equations).

Chapters 13 and 14 deal with I/0 and internationalization (two closely related subjects):
e Chapter 13: Input/Output Using Stream Classes

This chapter covers the I/O component of C++. This component is the standardized form
of the commonly known 10Stream library. The chapter also describes details that may be
important to programmers but are typically not so well known. For example, it describes
the correct way to define and integrate special 1/0O channels, which are often
implemented incorrectly in practice.

e Chapter 14: Internationalization

This chapter covers the concepts and classes for the internationalization of programs. In
particular, it describes the handling of different character sets, as well as the use of
different formats for such values as floating-point numbers and dates.

The rest of the book contains:
e Chapter 15: Allocators

This chapter describes the concept of different memory models in the C++ standard
library.

e An appendix with
o Internet Resources
o Bibliography
o Index

1.4 How to Read this Book

This book is a mix of introductory user's guide and structured reference manual regarding the
C++ standard library. The individual components of the C++ standard library are independent of
each other, to some extent, so after reading Chapters 2 through 4 you could read the chapters
that discuss the individual components in any order. Bear in mind, that Chapter 5 through
Chapter 9 all describe the same component. To understand the other STL chapters, you should
start with the introduction to the STL in Chapter 5.

If you are a C++ programmer who wants to know, in general, the concepts and all parts of the
library, you could simply read the book from the beginning to the end. However, you should skip
the reference sections. To program with certain components of the C++ standard library, the best
way to find something is to use the index. | have tried to make the index very comprehensive to
save you time when you are looking for something.

In my experience, the best way to learn something new is to look at examples. Therefore, you'll
find a lot of examples throughout the book. They may be a few lines of code or complete
programs. In the latter case, you'll find the name of the file containing the program as the first

dyne-book 11

The C++ Standard Library

comment line. You can find the files on the Internet at my Web site at
http://www.josuttis.com/libbook/.

1.5 State of the Art

While | was writing this book, the C++ standard was completed. Please bear in mind that some
compilers might not yet confirm to it. This will most likely change in the near future. As a
consequence, you might discover that not all things covered in this book work as described on
your system, and you may have to change example programs to fit your specific environment. |
can compile almost all example programs with version 2.8 or higher of the EGCS compiler, which
is free for almost all platforms and available on the Internet (see http://egcs.cygnus.com/) and
on several software CDs.

1.6 Example Code and Additional Information

You can access all example programs and acquire more informations about this book and the
C++ standard library from my Web site at http://www.josuttis.com/libbook/. Also, you can
find a lot of additional information about this topic on the Internet. See Internet Resources
for details.

1.7 Feedback

| welcome your feedback (good and bad) on this book. | tried to prepare it carefully; however, I'm
human, and at some time | have to stop writing and tweaking. So, you may find some errors,
inconsistencies, or subjects that could be described better. Your feedback will give me the
chance to improve later editions. The best way to reach me is by Email:

libbook@josuttis.com
You can also reach me by phone, fax, or "snail" mail:

Nicolai M. Josuttis
Berggarten 9

D-38108 Braunschweig
Germany

Phone: +49 5309 5747
Fax: +49 5309 5774

Many thanks.

dyne-book 12

The C++ Standard Library

Chapter 2. Introduction to C++ and the Standard
Library

2.1 History

The standardization of C++ was started in 1989 and finished at the end of 1997, although some
formal motions delayed the final publication until September 1998. The result was a reference
manual with approximately 750 pages, published by the International Standards Organization
(ISO). The standard has the title "Information Technology — Programming Languages — C++."
Its document number is ISO/IEC 14882-1998, and it is distributed by the national bodies of the
ISO, such as the ANSI in the United States.[1]

[1] At the time this book was written, you could get the C++ standard at the ANSI Electronics Standard Store
for $ 18.00 (US; see http://www.ansi.org/).

The standard was an important milestone for C++. Because it defines the exact contents and
behavior of C++, it makes it easier to teach C++, to use C++ in applications, and to port C++
programs to different platforms. It also gives users greater freedom of choice regarding different
C++ implementations. Its stability and portability help library providers and tool providers as well
as implementers. Thus, the standard helps C++ application developers build better applications
faster, and maintain them with less cost and effort.

Part of the standard is a standard library. This library provides core components for I/O, strings,
containers (data structures), algorithms (such as sort, search, and merge), support for numeric
computation, and (as could be expected from an international standard) support for
internationalization (such as different character sets).

You may wonder why the standardization process took almost 10 years, and if you know some
details about the standard you might wonder why after all this time it is still not perfect. Ten years,
in fact, was not enough time! Although, according to the history and the context of the
standardization process, a lot was accomplished. The result is usable in practice, but it is not
perfect (nothing ever is).

The standard is not the result of a company with a big budget and a lot of time. Standards
organizations pay nothing or almost nothing to the people who work on developing standards. So,
if a participant doesn't work for a company that has a special interest in the standard, the work is
done for fun. Thank goodness there were a lot of dedicated people who had the time and the
money to do just that.

The C++ standard was not developed from scratch. It was based on the language as described
by Bjarne Stroustrup, the creator of C++. The standard library, however, was not based on a book
or on an existing library. Instead, different, existing classes were integrated.[2] Thus, the result is
not very homogeneous. You will find different design principles for different components. A good
example is the difference between the string class and the STL, which is a framework for data
structures and algorithms:

[2] You may wonder why the standardization process did not design a new library from scratch.
The major purpose of standardization is not to invent or to develop something; it is to harmonize
an existing practice.

String classes are designed as a safe and convenient component. Thus, they provide an almost
self-explanatory interface and check for many errors in the interface.

dyne-book 13

The C++ Standard Library

The STL was designed to combine different data structures with different algorithms while
achieving the best performance. Thus, the STL is not very convenient and it is not required to
check for many logical errors. To benefit from the powerful framework and great performance of
the STL, you must know the concepts and apply them carefully.

Both of these components are part of the same library. They were harmonized a bit, but they still
follow their individual, fundamental design philosophies.

One component of the library existed as a de facto standard before standardization began: the
I0Stream library. Developed in 1984, it was reimplemented and partially redesigned in 1989.
Because many programs were using it already, the general concept of the I0Stream library was
not changed, thus keeping it backward compatible.

In general, the whole standard (language and library) is the result of a lot of discussions and
influence from hundreds of people all over the world. For example, the Japanese came up with
important support for internationalization. Of course, mistakes were made, minds were changed,
and people had different opinions. Then, in 1994, when people thought the standard was close to
being finished, the STL was incorporated, which changed the whole library radically. However, to
get finished, the thinking about major extensions was eventually stopped, regardless of how
useful the extension would be. Thus, hash tables are not part of the standard, although they
should be a part of the STL as a common data structure.

The current standard is not the end of the road. There will be fixes of bugs and inconsistencies,
and there likely will be a next version of the standard in five years or so. However for the next few
years, C++ programmers have a standard and the chance to write powerful code that is portable
to very different platforms.

2.2 New Language Features

The core language and the library of C++ were standardized in parallel. In this way, the library
could benefit from improvements in the language and the language could benefit from
experiences of library implementation. In fact, during the standardization process the library often
used special language features that were not yet available.

C++ is not the same language it was five years ago. If you didn't follow its evolution, you may be
surprised with the new language features used by the library. This section gives you a brief
overview of those new features. For details, refer to books on the language in question.

While | was writing this book (in 1998), not all compilers were able to provide all of the new
language features. | hope (and expect) that this will change very soon (most compiler vendors
were part of the standardization process). Thus, you may be restricted in your use of the library.
Portable implementations of the library typically consider whether features are present in the
environment they use (they usually have some test programs to check which language features
are present, and then set preprocessor directives according to the result of the check). I'll mention
any restrictions that are typical and important throughout the book by using footnotes.

The following subsections describe the most important new language features that are relevant
for the C++ standard library.

2.2.1 Templates

Almost all parts of the library are written as templates. Without template support, you can't use
the standard library. Moreover, the library needed new special template features, which |
introduce after a short overview of templates.

dyne-book 14

The C++ Standard Library

Templates are functions or classes that are written for one or more types not yet specified. When
you use a template, you pass the types as arguments, explicitly or implicitly. The following is a
typical example — a function that returns the maximum of two values:

template <class T>
inline const T& max (const T& a, const T& Db)
{
// 1if a <b then use b else use a
return a < b ? b : a;
}
Here, the first line defines T as an arbitrary data type that is specified by the caller when the caller
calls the function. You can use any identifier as a parameter name, but using T is very common, if
not a de facto convention. The type is classified by class, although it does not have to be a
class. You can use any data type as long as it provides the operations that the template uses.!

131 c1ass was used here to avoid the introduction of a new keyword when templates were introduced.
However, now there is a new keyword, typename, that you can also use here (see page 11).

Following the same principle, you can "parameterize" classes on arbitrary types. This is useful for
container classes. You can implement the container operations for an arbitrary element type. The
C++ standard library provides many template container classes (for example, see Chapter 6 or
Chapter 10). It also uses template classes for many other reasons. For example, the string
classes are parameterized on the type of the characters and the properties of the character set
(see Chapter 11).

A template is not compiled once to generate code usable for any type; instead, it is compiled for
each type or combination of types for which it is used. This leads to an important problem in the
handling of templates in practice: You must have the implementation of a template function
available when you call it, so that you can compile the function for your specific type. Therefore,
the only portable way of using templates at the moment is to implement them in header files by
using inline functions.'

41 To avoid the problem of templates having to be present in header files, the standard introduced a
template compilation model with the keyword export. However, | have not seen it implemented yet.

The full functionality of the C++ standard library requires not only the support of templates in
general, but also many new standardized template features, including those discussed in the
following paragraphs.

Nontype Template Parameters

In addition to type parameters, it is also possible to use nontype parameters. A nontype
parameter is then considered as part of the type. For example, for the standard class bitset<>
(class bitset<> is introduced in Section 10.4,) you can pass the number of bits as the
template argument. The following statements define two bitfields, one with 32 bits and one with
50 bits:

bitset<32> flags32; // bitset with 32 bits
bitset<50> flags50; // bitset with 50 bits

These bitsets have different types because they use different template arguments. Thus, you
can't assign or compare them (except if a corresponding type conversion is provided).

Default Template Parameters

dyne-book 15

The C++ Standard Library

Templates classes may have default arguments. For example, the following declaration allows
one to declare objects of class MyClass with one or two template arguments®! :

151 Note that you have to put a space between the two ">" characters. ">>" would be parsed as shift
operator, which would result in a syntax error.

template <class T, class container = vector<T> >
class MyClass;
If you pass only one argument, the default parameter is used as second argument:

MyClass<int> x1; // equivalent to: MyClass<int,vector<int> >
Note that default template arguments may be defined in terms of previous arguments.

Keyword typename

The keyword typename was introduced to specify that the identifier that follows is a type.
Consider the following example:

template <class T>
Class MyClass {
typename T::SubType * ptr;

}i
Here, typename is used to clarify that SubType is a type of class T. Thus, ptr is a pointer to
the type T::SubType. Without typename, SubType would be considered a static member.
Thus

T::SubType * ptr
would be a multiplication of value SubType of type T with ptr.
According to the qualification of SubType being a type, any type that is used in place of T must
provide an inner type SubType . For example, the use of type 0 as a template argument

MyClass<Q> x;
is possible only if type @ has an inner type definition such as the following:

class Q {
typedef int SubType;

bi
In this case, the ptr member of MyClass<Q> would be a pointer to type int. However, the
subtype could also be an abstract data type (such as a class):

class Q {
class SubType;

bi
Note that typename is always necessary to qualify an identifier of a template as being a type,
even if an interpretation that is not a type would make no sense. Thus, the general rule in C++ is
that any identifier of a template is considered to be a value, except it is qualified by typename.

Apart from this, t ypename can also be used instead of class in a template declaration:

template <typename T> class MyClass;

dyne-book 16

The C++ Standard Library

Member Templates

Member functions of classes may be templates. However, member templates may not be virtual,
nor may they have default parameters. For example:

class MyClass {

template <class T>
void £ (T);
bi
Here, MyClass: : £ declares a set of member functions for parameters of any type. You can pass
any argument as long as its type provides all operations used by £ () .

This feature is often used to support automatic type conversions for members in template
classes. For example, in the following definition the argument x of assign () must have exactly
the same type as the object it is called for:

template <class T>
class MyClass {
private:
T value;
public:
void assign(const MyClass<T>& x) {
// x must have same type as *this
value = x.value;

bi
It would be an error to use different template types for the objects of the assign () operation
even if an automatic type conversion from one type to the other is provided:

void £ ()

{
MyClass<double> d;
MyClass<int> 1i;

d.assign(d); //OK
d.assign (i) ; //ERROR: i is MyClass<int>
// but MyClass<double> is required
}
By providing a different template type for the member function, you relax the rule of exact match.
The member template function argument may have any template type, then as long as the types
are assignable:

template <class T>
class MyClass<T> {
private:
T value;
public
template <class X> // member template
void assign(const MyClass<X>& x) {// allows different template
types
value = x.getValue();
}
T getValue () const {

dyne-book 17

The C++ Standard Library

return value;
}s

void f ()

{
MyClass<double> d;
MyClass<int> i;

d.assign(d); // OK
d.assign (i) ; // OK (int is assignable to double)
}
Note that the argument x of assign () now differs from the type of *this. Thus, you can't
access private and protected members of MyClass<> directly. Instead, you have to use
something like getvalue () in this example.

A special form of a member template is a template constructor. Template constructors are usually
provided to enable implicit type conversions when objects are copied. Note that a template
constructor does not hide the implicit copy constructor. If the type matches exactly, the implicit
copy constructor is generated and called. For example:

template <class T>
class MyClass<T> {
public:
//copy constructor with implicit type conversion
//- does not hide implicit copy constructor
template <class U>
MyClass (const MyClass<U>& x);

}i

void £ ()

{
MyClass<double> xd;

MyClass<double> xd2(xd) ; // calls built-in copy constructor
MyClass<int> xi (xd); // calls template constructor

}
Here, the type of xd2 is the same as the type of xd, so it is initialized via the built-in copy
constructor. The type of xi differs from the type of xd, so it is initialized by using the template
constructor. Thus, if you write a template constructor, don't forget to provide a copy constructor, if
the default copy constructor does not fit your needs. See Section 4.1, for another example of
member templates.

Nested Template Classes

Nested classes may also be templates:

template <class T>
class MyClass {

dyne-book 18

The C++ Standard Library

template <class T2>
class NestedClass;

bi
2.2.2 Explicit Initialization for Fundamental Types

If you use the syntax of an explicit constructor call without arguments, fundamental types are
initialized with zero:

int i1; // undefined value

int 12 = int(); // initialized with zero
This feature is provided to enable you to write template code that ensures that values of any type
have a certain default value. For example, in the following function the initialization guarantees
that x is initialized with zero for fundamental types:

template <class T>
void £ ()

2.2.3 Exception Handling

The C++ standard library uses exception handling. Using this feature, you can handle exceptions
without "polluting” your function interfaces: arguments and return values. If you encounter an
unexpected situation, you can stop the usual data processing by "throwing an exception™:

class Error;

void £ ()
{

if (excetion-condition) {
throw Error(); // create object of class Error and throw it
as exception

}

}
The throw statement starts a process called stack unwinding; that is, any block or function is left
as if there was a return statement. However, the program does not jump anywhere. For all local
objects that are declared in the blocks that the program leaves due to the exception their
destructors are called. Stack unwinding continues until main () is left, which ends the program,
or until a catch clause "catches" and handles the exception:

int main ()
{ try {
£0;
}

catch (const Erroré&) {

dyne-book 19

The C++ Standard Library

//handle exception

}
Here, any exception of type Error in the try block is handled in the catch clause.!

(6] Exceptions end a call of the function, where you find the exception, with the ability to pass an object as
argument back to the caller. However, this is not a function call back in the opposite direction (from the
bottom where the problem was found to the top where the problem is solved or handled). You can't process
the exception and continue from where you found the exception. In this regard, exception handling is
completely different from signal handling.

Exception objects are ordinary objects that are described in ordinary classes or ordinary
fundamental types. Thus, you can use ints, strings, or template classes that are part of a class
hierarchy. Usually you design (a hierarchy of) special error classes. You can use their state to
pass any information you want from the point of error detection to the point of error handling.

Note that the concept is called exception handling not error handling. The two are not necessarily
the same. For example, in many circumstances bad user input is not an exception; it typically
happens. So it is often a good idea to handle wrong user input locally using the usual error-
handling techniques.

You can specify which set of exceptions a function might throw by writing an exception
specification:

void f() throw(bad alloc); //f() may only throw bad alloc exceptions
You can specify that a function not throw an exception by declaring an empty set of exceptions:

void f() throw(); //f£() does not throw
A violation of an exception specification causes special behavior to occur. See the description of
the exception class bad exception on page 26 for details.

The C++ standard library provides some general features for exception handling, such as the
standard exception classes and class auto ptr (see Section 3.3, and Section 4.2, for
details).

2.2.4 Namespaces

As more and more software is written as libraries, modules, or components, the combination of
these different parts might result in a name clash. Namespaces solve this problem.

A namespace groups different identifiers in a named scope. By defining all identifiers in a
namespace, the name of the namespace is the only global identifier that might conflict with other
global symbols. Similar to the handling of classes, you have to qualify a symbol in a namespace
by preceding the identifier with the name of the namespace, separated by the operator :: as
follows:

//defining identifiers in namespace Jjosuttis
namespace Jjosuttis {

class File;

void myGlobalFunc () ;

dyne-book 20

The C++ Standard Library

//using a namespace identifier
josuttis::File obj;

josuttis::myGlobalFunc () ;
Unlike classes, namespaces are open for definitions and extensions in different modules. Thus
you can use namespaces to define modules, libraries, or components even by using multiple
files. A namespace defines logical modules instead of physical modules (in UML and other
modeling notations, a module is also called a package).

You don't have to qualify the namespace for functions if one or more argument types are defined
in the namespace of the function. This rule is called Koenig lookup. For example:

//defining identifiers in namespace josuttis
namespace Jjosuttis {

class File;

void myGlobalFunc (const File&);

josuttis::File obj;

myGlobalFunc (obj) ; //0OK, lookup finds josuttis::myGlobalFunc /()
By using a using declaration, you can avoid the (remaining) tedious, repeated qualification of the
namespace scope. For example, the declaration

using josuttis::File;
makes File a local synonym in the current scope that stands for josuttis::File.

A using directive makes all names of a namespace available, because they would have been
declared outside their namespace. However, the usual name conflicts may arise. For example,
the directive

using namespace josuttis;
makes File and myGlobalFunc () global in the current scope. The compiler will report an
ambiguity if there also exists an identifier File or myGlobalFunc () in the global scope and the
user uses the name without qualification.

Note that you should never use a using directive when the context is not clear (such as in header
files, modules, or libraries). The directive might change the scope of identifiers of a namespace,
so you might get different behavior than the one expected because you included or used your
code in another module. In fact, using directives in header files is really bad design.

The C++ standard library defines all identifiers in namespace std. See Section 3.1, for details.
2.2.5 Type bool

To provide better support for Boolean values, type bool was introduced. Using bool increases
readability and allows you to overload behavior for Boolean values. The literals true and false
were introduced as Boolean values. Automatic type conversions to and from integral values are
provided. The value 0 is equivalent to false. Any other value is equivalent to true.

2.2.6 Keyword explicit

dyne-book 21

The C++ Standard Library

By using the keyword explicit, you can prohibit a single argument constructor from defining
an automatic type conversion. A typical example of the need for this feature is in a collection
class in which you can pass the initial size as constructor argument. For example, you could
declare a constructor that has an argument for the initial size of a stack:

class Stack {
explicit Stack(int size); // create stack with initial size

}i
Here, the use of explicit is rather important. Without explicit this constructor would define
an automatic type conversion from int to Stack. If this happens, you could assign an int to a
Stack:

Stack s;

s = 40;// Oops, creates a new Stack for 40 elements and assigns it to
S
The automatic type conversion would convert the 40 to a stack with 40 elements and then assign
it to s. This is probably not what was intended. By declaring the int constructor as explicit,
such an assignment results in an error at compile time.

Note that explicit also rules out the initialization with type conversion by using the assignment
syntax:

Stack s1(40); // OK
Stack s2 = 40; // ERROR
This is because there is a minor difference between

X x;

Y v (x); // explicit conversion
and

X x;

Y v = x; // implicit conversion

The former creates a new object of type Y by using an explicit conversion from type X, whereas
the latter creates a new object of type Y by using an implicit conversion.

2.2.7 New Operators for Type Conversion

To enable you to clarify the meaning of an explicit type conversion for one argument, the
following four new operators were introduced:

1. static cast

This operator converts a value logically. It can be considered a creation of a temporary
object that is initialized by the value that gets converted. The conversion is allowed only if
a type conversion is defined (either as a built-in conversion rule or via a defined
conversion operation). For example:

float x;

cout << static cast<int>(x); // print x as int

dyne-book 22

The C++ Standard Library

f(static _cast<string>("hello")); // call f£() for string
instead of char*

2. dynamic cast

This operator enables you to downcast a polymorphic type to its real static type. This is
the only cast that is checked at runtime. Thus, you could also use it to check the type of a
polymorphic value. For example:

class Car; // abstract base class (has at least one
virtual function)

class Cabriolet : public Car {
}i
class Limousine : public Car {
}i

void f (Car* cp)
{
Cabriolet* p = dynamic cast<Cabriolet*>(cp);
if (p == NULL) {
//p did not refer to an object of type Cabriolet

In this example, f() contains a special behavior for objects that have the real static type
Cabriolet. When the argument is a reference and the type conversion fails,
dynamic_cast throws a bad_cast exception (bad_cast is described on page 26).

Note that from a design point of view, it it always better to avoid such type-dependent
statements when you program with polymorphic types.

3. const cast

This operator adds or removes the constness of a type. In addition, you can remove a
volatile qualification. Any other change of the type is not allowed.

4. reinterpret cast

The behavior of this operator is implementation defined. It may be but is not required to
reinterpret bits. Using this cast is usually not portable.

These operators replace the old cast techniques that use parentheses. They have the advantage
of clarifying the intention of the conversion. The old casts with parentheses could be used for any
of these type conversions except for dynamic cast, so when they were used you could not
formulate the exact reason for the conversion. The new operators enable the compiler to receive
more information regarding the reason for the conversion and to report an error if the conversion
does more than it should.

dyne-book 23

The C++ Standard Library

Note that these operators are provided for only one argument. Consider the
following example:

static _cast<Fraction>(15,100) // Oops, creates Fraction (100)
This example does not do what you might expect. Instead of initializing a temporary fraction with
numerator 15 and denominator 100, it initializes a temporary fraction only with the single value
100. The comma is not an argument separator here. Instead, it is the comma operator that
combines two expressions into one expression and yields the second. The correct way to
"convert" values 15 and 100 into a fraction is still

Fraction (15,100) // fine, creates Fraction(15,100)

2.2.8 Initialization of Constant Static Members

It is now possible to initialize integral constant static members inside the class structure. This is
useful when the constant is used in the class structure after the initialization. For example:

class MyClass {
static const int num = 100;
int elems [num];

bi
Note that you still have to to define space for a constant static member that is initialized within a
class definition:

const int MyClass::num; // no initialization here

2.2.9 Definition of main ()

I'd also like to clarify an important, often misunderstood, aspect of the core language — namely,
the only correct and portable versions of main () . According to the C++ standard, only two
definitions of main () are portable:

int main ()

{

}
and

int main (int argc, char* argvl[])

{

}
where argv (the array of command-line arguments) might also be defined as char** . Note that
the return type int is required because the implicit int is deprecated.

You may, but are not required to, end main () with a return statement. Unlike C, C++ defines
an implicit

return 0O;
at the end of main () . This means that every program that leaves main () without a return
statement is successful (any value other than 0 represents a kind of failure). Because of this, my
examples in this book have no return statement at the end of main () . Note that some

dyne-book 24

The C++ Standard Library

compilers might print a warning message regarding this or even handle it as error. Well, that's life
before the standard.

2.3 Complexity and the Big-O Notation

For certain parts of the C++ standard library (especially for the STL), the performance of
algorithms and member functions was considered carefully. Thus, the standard requires a certain
"complexity" of them. Computer scientists use a specialized notation to compare the relative
complexity of an algorithm. Using this measure, one can categorize quickly the relative runtime of
an algorithm as well as perform qualitative comparisons between algorithms. This measure is
called Big-O notation.

The Big-O notation expresses the runtime of an algorithm as a function of a given input of size n.
For example, if the runtime grows linearly with the number of elements (doubling the input
doubles the runtime) the complexity is O(n). If the runtime is independent of the input, the
complexity is O(1). Table 2.1 lists typical values of complexity and their Big-O notation.

It is important to observe that the Big-O notation hides factors with smaller exponents (such as
constant factors). In particular, it doesn't matter how long an algorithm takes. Any two linear
algorithms are considered equally acceptable by this measure. There even may be some
situations in which the constant is so huge in a linear algorithm that even an exponential
algorithm with a small constant would be preferable in practice. This is a valid criticism of the Big-
O notation. Just be aware that it is only a rule of thumb; the algorithm with optimal complexity is
not necessarily the best one.

Table 2.1. Typical Values of Complexity

Type Notation Meaning

Constant |O(1) The runtime is independent of the number of elements.

Logarithmic /O(log(n)) The runtime grows logarithmically with respect to the number of
elements.

Linear O(n) The runtime grows linearly (with the same factor) as the number of
elements grows.

n-log-n O(n * The runtime grows as a product of linear and logarithmic complexity.

log(n))
Quadratic O(n2) The runtime grows quadratically with respect to the number of elements.

Table 2.2 lists all the categories of complexity with a certain number of elements to give you a
feel of how fast the runtime grows with respect to the number of elements. As you can see, with a
small number of elements the runtimes don't differ much. Here, constant factors that are hidden
by the Big-O notation may have a big influence. However, the more elements you have, the
bigger the differences in the runtimes, so constant factors become meaningless. Remember to
"think big" when you consider complexity.

Table 2.2. Runtime with Respect to the Complexity and the Number of Elements

Complexity No.of Elements
Type Notation 12 5 10 50 100 1000
Constant o(1) 11 1 1 1 1 1
Logarithmic O(log(n)) 12 3 4 6 7 10
Linear O(n) 12 5 10 50 100 1,000
n-log-n O(n *log(n)) 1 4/ 15 40 300 700 10,000
Quadratic o(n®) 14 25 100 2,500 10,000 1,000,000

dyne-book 25

The C++ Standard Library

Some complexity definitions in the C++ reference manual are specified as amortized. This means
that the operations in the long term behave as described. However, a single operation may take
longer than specified. For example, if you append elements to a dynamic array, the runtime
depends on whether the array has enough memory for one more element. If there is enough
memory, the complexity is constant because inserting a new last element always takes the same
time. However, if there is not enough memory, the complexity is linear. This is because,
depending on the actual number of elements, you have to allocate new memory and copy all
elements. Reallocations are rather rare, so any sufficiently long sequence of that operation
behaves as if each operation has constant complexity. Thus, the complexity of the insertion is
"amortized" constant time.

dyne-book 26

The C++ Standard Library

Chapter 3. General Concepts

This chapter describes the fundamental concepts of the C++ standard library that you need to
work with all or most components:

e The namespace std

e The names and formats of header files

e The general concept of error and exception handling
e A brief introduction to allocators

3.1 Namespace std

If you use different modules and/or libraries, you always have the potential for name clashes. This
is because modules and libraries might use the same identifier for different things. This problem
was solved by the introduction of namespaces into C++ (see Section 2.2.4, for an introduction
to the concept of namespaces). A namespace is a certain scope for identifiers. Unlike a class, it is
open for extensions that might occur at any source. Thus, you could use a namespace to define
components that are distributed over several physical modules. A typical example of such a
component is the C++ standard library, so it follows that it uses a namespace. In fact, all
identifiers of the C++ standard library are defined in a namespace called std.

According to the concept of namespaces, you have three options when using an identifier of the
C++ standard library:

1. You can qualify the identifier directly. For example, you can write std: : ostream instead
of ostream. A complete statement might look like this:

std::cout << std::hex << 3.4 << std::endl;

2. You can use a using declaration (see page 17). For example, the following code fragment
introduces the local ability to skip std: : for cout and endl.

using std::cout;
using std::endl;

Thus the example in option 1 could be written like this:
cout << std::hex << 3.4 << endl;

3. You can use a using directive. (see page 17). This is the easiest option. By using a using
directive for namespace std, all identifiers of the namespace std are available as if
they had been declared globally. Thus, the statement

using namespace std;

dyne-book 27

The C++ Standard Library

allows you to write

cout << hex << 3.4 << endl;

Note that in complex code this might lead to accidental name clashes or, worse, to
different behavior due to some obscure overloading rules. You should never use a using
directive when the context is not clear (such as in header files, modules, or libraries).

The examples in this book are quite small, so for my own convenience, | usually use the last
option throughout this book in complete example programs.

3.2 Header Files

The use of namespace std for all identifiers of the C++ standard library was introduced during
the standardization process. This change is not backward compatible to old header files, in which
identifiers of the C++ standard library are declared in the global scope. In addition, some
interfaces of classes changed during the standardization process (however, the goal was to stay
backward compatible if possible). So, a new style for the names of standard header files was
introduced. This allows vendors to stay backward compatible by providing the old header files.

The definition of new names for the standard header files was a good opportunity to standardize
the extensions of header files. Previously, several extensions for header files were used; for
example, .h, .hpp, and .hxx. However, the new standard extension for header files might be
a surprise: Standard headers no longer have extensions. Hence, include statements for
standard header files look like this:

#include <iostream>
#include <string>

This also applies to header files assumed from the C standard. C header files now have the new
prefix c instead of the old extension .h:

#include <cstdlib> //was: <stdlib.h>
#include <cstring> //was: <string.h>

Inside these header files, all identifiers are declared in namespace std.

One advantage of this naming scheme is that you can distinguish the old string header for char*
C functions from the new string header for the standard C++ class string:

#include <string> //C++ class string
#include <cstring> //char* functions from C

Note that the new naming scheme of header files does not necessarily mean that the file names
of standard header files have no extensions from the point of view of the operating system. How
include statements for standard header files are handled is implementation defined. C++
systems might add an extension or even use built-in declarations without reading a file. However,
in practice, most systems simply include the header from a file that has exactly the same name
that is used in the include statement. So, in most systems, C++ standard header files simply
have no extension. Note that this requirement for no extension applies only to standard header

dyne-book 28

The C++ Standard Library

files. In general, it is still a good idea to use a certain extension for your own header files to help
identify them in a file system.

To maintain compatibility with C, the "old" standard C header files are still available. So if
necessary you can still use, for example,

#include <stdlib.h>

In this case, the identifiers are declared in both the global scope and in namespace std. In fact,
these headers behave as if they declare all identifiers in namespace std followed by an explicit
using declaration (see page 17).

For the C++ header files in the "old" format, such as <iostream.h>, there is no specification in
the standard (this changed more than once during the standardization process). Hence, they are
not supported. In practice, most vendors will probably provide them to enable backward
compatibility. Note that there were more changes in the headers than just the introduction of
namespace std. So in general you should either use the old names of header files or switch to
the new standardized names.

3.3 Error and Exception Handling

The C++ standard library is heterogeneous. It contains software from very different sources that
have different styles of design and implementation. Error and exception handling is a typical
example of these differences. Parts of the library, such as string classes, support detailed error
handling. They check for every possible problem that might occur and throw an exception if there
is an error. Other parts, such as the STL (the standard template library) and valarrays, prefer
speed over safety, so they rarely check for logical errors and throw exceptions only if runtime
errors occur.

3.3.1 Standard Exception Classes
All exceptions thrown from the language or the library are derived from the base class
exception. This class is the root of several standard exception classes that form a hierarchy,

as shown in Figure 3.1. These standard exception classes can be divided into three groups:

Figure 3.1.. Hierarchy of Standard Exceptions

dyne-book 29

The C++ Standard Library

bad_alloc |
domain_error

invalid argument

bad typeid

. length_error

legic_error - sut_of_smage

range error

1 overflow error

— underflow_error
bad_exception

1. Exceptions for language support
2. Exceptions for the C++ standard library
3. Exceptions for errors outside the scope of a program

Exception Classes for Language Support

Exceptions for language support are used by language features. So in a way they are part of the
core language rather than the library. These exceptions are thrown when the following operations
fail.

e An exception of class bad_alloc is thrown whenever the global operator new fails
(except when the nothrow version of new is used). This is probably the most important
exception because it might occur at any time in any nontrivial program.

e An exception of class bad cast is thrown by the dynamic cast operator if a type
conversion on a reference fails at runtime. The dynamic_cast operator is described on
page 19.

e An exception of class bad_typeid is thrown by the typeid operator for runtime type
identification. If the argument to typeid is zero or the null pointer, this exception gets
thrown.

e An exception of class bad exception is used to handle unexpected exceptions. It does
this by using the function unexpected () . unexpected () is called if a function throws
an exception that is not listed in an exception specification (exception specifications are
introduced on page 16). For example:

class E1;
class E2;
void f () throw(E1l) //throws only exceptions of type El
{
throw E1(); //throws exception of type El

dyne-book 30

The C++ Standard Library

throw E2();//calls unexpected(), which calls terminate ()

The throw of an exception of type E2 in £ () violates the exception specification. In this
case, the global function unexpected () gets called, which usually calls terminate ()
to terminate the program. However, if class bad exception is part of the exception
specification, then unexpected () usually rethrows an exception of this type:

class E1;
class E2;

void f () throw(El, std::bad exception)
//throws exception of type El or
//bad_exception for any other exception type

throw E1(); //throws exception of type El

throw E2(); //calls unexpected(), which throws bad exception

Thus, if an exception specification includes the class bad_exception, then any exception
not part of the specification may be replaced by bad_exception within the function
unexpected().[1]

11 you can modify the exact behavior of unexpected () . However, a function never throws
exceptions other than those stated in its exception specification (if any).

Exception Classes for the Standard Library

Exception classes for the C++ standard library are usually derived from class logic error.
Logic errors are errors that, at least in theory, could be avoided by the program; for example, by
performing additional tests of function arguments. Examples of such errors are a violation of
logical preconditions or a class invariant. The C++ standard library provides the following classes
for logic errors:

e An exception of class invalid argument is used to report invalid arguments, such as
when a bitset (array of bits) is initialized with a char otherthan '0' or ' 1.

e An exception of class 1length error is used to report an attempt to do something that
exceeds a maximum allowable size, such as appending too many characters to a string.

e An exception of class out of range is used to report that an argument value is not in
the expected range, such as when a wrong index is used in an array-like collection or
string.

e An exception of class domain error is used to report a domain error.

In addition, for the 1/O part of the library, a special exception class called ios base::failure
is provided. It may be thrown when a stream changes its state due to an error or end-of-file. The

exact behavior of this exception class is described in Section 13.4.4.

Exception Classes for Errors Outside the Scope of a Program

dyne-book 31

The C++ Standard Library

Exceptions derived from runtime error are provided to report events that are beyond the
scope of a program and are not easily avoidable. The C++ standard library provides the following
classes for runtime errors:

e An exception of class range error is used to report a range error in internal
computations.

e An exception of class overflow error is used to report an arithmetic overflow.

e An exception of class underflow error is used to report an arithmetic underflow.

Exceptions Thrown by the Standard Library

The C++ standard library itself can produce exceptions of classes range error,
out of range, and invalid argument. However, because language features as well as
user code are used by the library, their functions might throw any exception indirectly. In
particular, bad alloc exceptions can be thrown whenever storage is allocated.

Any implementation of the standard library might offer additional exception classes (either as
siblings or as derived classes). However, the use of these nonstandard classes makes code non-
portable because you could not use another implementation of the standard library without
breaking your code. So, you should always use only the standard exception classes.

Header Files for Exception Classes

The base class exception and class bad exception are defined in <exception>. Class
bad _alloc is defined in <new>. Classes bad cast and bad typeid are defined in
<typeinfo>. Class ios base::failure is defined in <ios>. All other classes are defined
in <stdexcept>.

3.3.2 Members of Exception Classes

To handle an exception in a catch clause, you may use the exception interface. The interface of
all standard exceptions classes contains only one member that can be used to get additional
information besides the type itself: the member function what (), which returns a null-terminated
byte string:

namespace std {
class exception {
public:
virtual const char* what () const throw();

}i

The content of the string is implementation defined. It most likely (but not necessarily) determines
the level of help and detail of such information. Note that the string might be a null-terminated
multibyte string that is suitable to convert and display as wstring (wstrings are introduced in
Section 2, page 480). The C-string, returned by what (), is valid until the exception object from
which it is obtained gets destroyed.

[21 The specification of the lifetime of the return value of what () is not specified in the original standard.
However, this is the proposed resolution to fix this problem.

dyne-book 32

The C++ Standard Library

The remaining members of the standard exception classes create, copy, assign, and destroy
exception objects. Note that besides what () there is no additional member for any of the
standard exception classes that describes the kind of exception. For example, there is no
portable way to find out the context of an exception or the faulty index of a range error. Thus, a
portable evaluation of an exception could only print the message returned from what () :

try {

}

catch (const exception& error) |
//print implementation-defined error message
cerr << error.what() << endl;

The only other possible evaluation might be an interpretation of the exact type of the exception.
For example, due to a bad alloc exception, a program might try to get more memory.

3.3.3 Throwing Standard Exceptions

You can throw standard exceptions inside your own library or program. All standard exception
classes that enable you to do this have only one parameter to create the exception: a string
(class string is described in Chapter 11) that will become the description returned by
what () . For example, the class 1ogic error is defined as follows:

namespace std {
class logic _error : public exception {
public:
explicit logic error (const string& whatString);
bi
}

The set of standard exceptions that provide this ability contains class logic error and its
derived classes, class runtime error and its derived classes, as well as class
ios base::failure. Thus, you can't throw exceptions of the base class exception and any
exception class that is provided for language support.

To throw a standard exception, you simply create a string that describes the exception and use it
to initialize the thrown exception object:

string s;
throw out of range(s);

Implicit conversions from char* to string exist, so you can also use a string literal directly:
throw out of range("out of range exception (somewhere, somehow)");

3.3.4 Deriving Standard Exception Classes

Another possibility for using the standard exception classes in your code is to define a special
exception class derived directly or indirectly from class exception. To do this, you must ensure
that the what () mechanism works.

dyne-book 33

The C++ Standard Library

The member function what () is virtual. So, one way to provide what () is to write your own
implementation of what () :
namespace MyLib {
/* user-defined exception class
* derived from a standard class for exceptions
*/
class MyProblem : public std::exception {
public:

MyProblem(...) { //special constructor
}

virtual const char* what () const throw() {
//what () function

bi

void £ () {

//create an exception object and throw it
throw MyProblem(...);

Another way to provide the what () function is to derive your exception class from one of the
classes that have a string constructor for the what () argument:

namespace MyLib {
/* user-defined exception class
* - derived from a standard class for exceptions

* that has a constructor for the what() argument
*/

class MyRangeProblem : public std::out of range {
public:

MyRangeProblem (const string& whatString)
out of range(whatString) {
}
bi

void £ () {

//create an exception object by using a string constructor
and throw it

throw MyRangeProblem ("here is my special range problem");

For examples that are part of a complete program, see class Stack on page 441 and class
Queue on page 450.

dyne-book 34

The C++ Standard Library

3.4 Allocators

The C++ standard library uses in several places special objects to handle the allocation and deal-
location of memory. Such objects are called allocators. An allocator represents a special memory
model. It is used as abstraction to translate the need to use memory into a raw call for memory.
The use of different allocator objects at the same time allows you to use different memory models
in a program.

Allocators originally were introduced as part of the STL to handle the nasty problem of different
pointer types on PCs (such as near, far, and huge pointers). They now serve as a base for
technical solutions that use certain memory models, such as shared memory, garbage collection,
and object-oriented databases, without changing the interfaces. However, this use is relatively
new and not yet widely adopted (this will probably change).

The C++ standard library defines a default allocator as follows:

namespace std {
template <class T>
class allocator;

The default allocator is used as the default value everywhere an allocator can be used as an
argument. It does the usual calls for memory allocation and deallocation; that is, it calls the new
and delete operators. However, when or how often these operators are called is unspecified.
Thus, an implementation of the default allocator might, for example, cache the allocated memory
internally.

The default allocator is used in most programs. However, sometimes other libraries provide
allocators to fit certain needs. In such cases you simply must pass them as arguments. Only
occasionally does it make sense to program allocators. In practice, typically the default allocator
is used. So the discussion of allocators is deferred until Chapter 15, which covers in detail not
only allocators, but also their interfaces.

dyne-book 35

The C++ Standard Library

Chapter 4. Utilities

This chapter describes the general utilities of the C++ standard library. These utilities are:

e Small, simple classes and functions that perform often-needed tasks
e Several general types

e Some important C functions

e Numeric limitst!

(11 One could argue that numeric limits should be part of Chapter 12, which covers numerics,
but these numeric limits are used in some other parts of the library, so | decided to describe them
here.

Most, but not all, of these utilities are described in clause 20, "General Utilities," of the C++
Standard, and their definitions can be found in the <utility> header. The rest are described
along with more major components of the library either because they are used primarily with that
particular component or due to historical reasons. For example, some general auxiliary functions
are defined as part of the <algorithm> header, although they are not algorithms in the sense of
the STL (which is described in Chapter 5).

Several of these utilities are also used within the C++ standard library. In particular, the type
pair is used whenever two values need to be treated as single unit (for example, if a function
has to return two values).

4.1 Pairs

The class pair is provided to treat two values as a single unit. It is used in several places within
the C++ standard library. In particular, the container classes map and multimap use pairs to
manage their elements, which are key/value pairs (See Section 6.6). Another example of the
usage of pairs is functions that return two values.

The structure pair is defined in <utility> as follows:

namespace std {
template <class T1l, class T2>
struct pair {
//type names for the values
typedef T1 first type;
typedef T2 second type;

//member
Tl first;
T2 second;

/* default constructor

* — T1 () and T2 () force initialization for built-in types
*/
pair ()
first(T1()), second(T2()) {

}

dyne-book 36

The C++ Standard Library

//constructor for two values
pair (const Tl& a, const T2& Db)
first(a), second(b) {

}

//copy constructor with implicit conversions
template<class U, class V>
pair (const pair<U,V>& p)
first(p.first), second(p.second) {
}
}:

//comparisons
template <class T1l, class T2>
bool operator== (const pair<Tl,T2>&, const pair<Tl,T2>&);

template <class T1l, class T2>

bool operator< (const pair<Tl,T2>&, const pair<Tl,T2>&);
//similar: !=, <=, >, >=

//convenience function to create a pair

template <class T1l, class T2>

pair<T1l,T2> make pair (const Tl&, const T2&);

}

Note that the type is declared as struct instead of class so that all members are public. Thus,
for any value pair, direct access to the individual values is possible.

The default constructor creates a value pair with values that are initialized by the default
constructor of their type. Because of language rules, an explicit call of a default constructor also
initializes fundamental data types such as int. Thus, the declaration

std::pair<int, float> p; //initialize p. first and p.second with
zero

initializes the values of p by using int () and float (), which yield zero in both cases. See
page 14 for a description of the rules for explicit initialization for fundamental types.

The template version of a copy constructor provided here is used when implicit type conversions
are necessary. If an object of type pair gets copied, the normal implicitly generated default copy
constructor is called.? For example:

1A template constructor does not hide the implicitly generated default constructor. See page 13 doe more
details about this topic.

void f(std::pair<int,const char*>);
void g(std::pair<const int.std::string>);

void foo {

std::pair<int,const char*> p(42,"hello");
f(p): //OK: calls built-in default copy constructor
g(p); //0OK: calls template constructor

dyne-book 37

The C++ Standard Library

Pair Comparisons

For the comparison of two pairs, the C++ standard library provides the usual comparison
operators. Two value pairs are equal if both values are equal:

namespace std {
template <class T1l, class T2>
bool operator== (const pair<Tl,T2>& x, const pair<Tl,T2>& y) {
return x.first == y.first && x.second == y.second;
}
}

In a comparison of pairs, the first value has higher priority. Thus, if the first values of two pairs
differ, the result of their comparison is used as the result of the comparison of the whole pairs. If
the first values are equal, the comparison of the second values yields the result:

namespace std {
template <class T1l, class T2>
bool operator< (const pair<Tl,T2>& x, const pair<Tl,T2>& y) {

return x.first < y.first ||
(!'(y.first < x.first) && x.second < y.second);

The other comparison operators are defined accordingly.
4.1.1 Convenience Function make pair()

The make pair () template function enables you to create a value pair without writing the types
explicitly™! :

Bl Using make pair () should cost no runtime. The compiler should always optimize any implied overhead.

namespace std {
//create value pair only by providing the values
template <class T1l, class T2>
pair<Tl,T2> make pair (const Tl& x, const T2& y) {
return pair<Tl,T2>(x, Vy);
}

For example, by using make pair () you can write
std::make pair (42, '@")

instead of

std::pair<int,char>(42,'Q@")

dyne-book 38

The C++ Standard Library

In particular, the make pair () function makes it convenient to pass two values of a pair directly
to a function that requires a pair as its argument. Consider the following example:

void f(std::pair<int,const char*>);
void g(std::pair<const int,std::string>);

void foo {
f(std::make pair (42, "hello")); //pass two values as pair
g (std::make pair(42,"hello")); //pass two values as pair
// with type conversions

As the example shows, make pair () makes it rather easy to pass two values as one pair
argument. It works even when the types do not match exactly because the template constructor
provides implicit type conversion. When you program by using maps or multimaps, you often
need this ability (see page 203).

Note that an expression that has the explicit type description has an advantage because the
resulting type of the pair is clearly defined. For example, the expression

std::pair<int, float>(42,7.77)

does not yield the same as

std::make pair(42,7.77)

The latter creates a pair that has double as the type for the second value (unqualified floating
literals have type double). The exact type may be important when overloaded functions or
templates are used. These functions or templates might, for example, provide versions for both
float and double to improve efficiency.

4.1.2 Examples of Pair Usage

The C++ standard library uses pairs a lot. For example, the map and multimap containers use
pair as a type to manage their elements, which are key/value pairs. See Section 6.6, for a
general description of maps and multimaps, and in particular page 91 for an example that shows
the usage of type pair. Objects of type pair are also used inside the C++ standard library in
functions that return two values (see page 183 for an example).

4.2 Class auto_ptr

This section covers the auto ptr type. The auto ptr type is provided by the C++ standard
library as a kind of a smart pointer that helps to avoid resource leaks when exceptions are
thrown. Note that | wrote "a kind of a smart pointer." There are several useful smart pointer types.
This class is smart with respect to only one certain kind of problem. For other kinds of problems,
type auto ptr does not help. So, be careful and read the following subsections.

4.2.1 Motivation of Class auto_ptr

Functions often operate in the following way! :

dyne-book 39

The C++ Standard Library

[4] This motivation of class auto_ptr is based, with permission, partly on Scott Meyers' book More Effective
C++. The general technique was originally presented by Bjarne Stroustrup as the "resource allocation is
initialization" in his books The C++ Programming Language, 2nd edition and The Design and Evolution of
C++. auto_ptr was added to the standard specifically to support this technique.

1. Acquire some resources.
2. Perform some operations.
3. Free the acquired resources.

If the resources acquired on entry are bound to local objects, they get freed automatically on
function exit because the destructors of those local objects are called. But if resources are
acquired explicitly and are not bound to any object, they must be freed explicitly. Resources are
typically managed explicitly when pointers are used.

A typical examples of using pointers in this way is the use of new and delete to create and
destroy an object:

void f()

{
ClassA* ptr = new ClassA; //create an object explicitly
.. //perform some operations
delete ptr; //clean up (destroy the object explicitly)

This function is a source of trouble. One obvious problem is that the deletion of the object might
be forgotten (especially if you have return statements inside the function). There also is a not-
so-obvious danger that an exception might occur. Such an exception would exit the function
immediately without calling the delete statement at the end of the function. The result would be
a memory leak or, more generally, a resource leak. Avoiding such a resource leak usually
requires that a function catches all exceptions. For example:

void f ()
{
ClassA* ptr = new ClassA; //create an object explicitly
try {
//perform some operations
}
catch (...) { //for any exception
delete ptr; //-clean up
throw; //-rethrow the exception
}
delete ptr; //clean up on normal end

To handle the deletion of this object properly in the event of an exception, the code gets more
complicated and redundant. If a second object is handled in this way, or if more than one catch
clause is used, the problem gets worse. This is bad programming style and should be avoided
because it is complex and error prone.

A kind of smart pointer can help here. The smart pointer can free the data to which it points
whenever the pointer itself gets destroyed. Furthermore, because the pointer is a local variable, it

dyne-book 40

The C++ Standard Library

gets destroyed automatically when the function is exited regardless of whether the exit is normal
or is due to an exception. The class auto ptr was designed to be such a kind of smart pointer.

An auto_ptr is a pointer that serves as owner of the object to which it refers (if any). As a result,
an object gets destroyed automatically when its auto ptr gets destroyed. A requirement of an
auto_ptr is that its object has only one owner.

Here is the previous example rewritten to use an auto ptr:

//header file for auto ptr
#include <memory>

void f ()
{

//create and initialize an auto ptr
std::auto _ptr<ClassA> ptr(new ClassA);

//perform some operations

The delete statement and the catch clause are no longer necessary. An auto_ptr has much
the same interface as an ordinary pointer; that is, operator * dereferences the object to which it
points, whereas operator —> provides access to a member if the object is a class or a structure.
However, any pointer arithmetic (such as ++) is not defined (this might be an advantage, because
pointer arithmetic is a source of trouble).

Note that class auto ptr<> does not allow you to initialize an object with an ordinary pointer by
using the assignment syntax. Thus, you must initialize the auto ptr directly by using its value!

51 There is a minor difference between

X x;

Y y(x); //explicit conversion
and

X x;

Y v = x; //implicit conversion

The former creates a new object of type Y by using an explicit conversion from type x, whereas the latter
creates a new object of type Y by using an implicit conversion.

std::auto ptr<ClassA> ptrl (new ClassAh); //OK
std::auto ptr<ClassA> ptr2 = new ClassA; //ERROR

4.2.2 Transfer of Ownership by auto_ptr

An auto ptr provides the semantics of strict ownership. This means that because an
auto ptr deletes the object to which it points, the object should not be "owned" by any other
objects. Two or more auto ptrs must not own the same object at the same time. Unfortunately,

dyne-book 41

The C++ Standard Library

it might happen that two auto ptrs own the same object (for example, if you initialize two
auto_ptrs with the same object). Making sure this doesn't happen is up to the programmer.

This leads to the question of how the copy constructor and the assignment operator of
auto ptrs operate. The usual behavior of these operations would be to copy the data of one
auto ptr to the other. However, this behavior would result in the situation, in which two
auto_ptrs own the same object. The solution is simple, but it has important consequences: The
copy constructor and assignment operator of auto ptrs "transfer ownership" of the objects to
which they refer.

Consider, for example, the following use of the copy constructor:

//initialize an auto ptr with a new object
std::auto ptr<ClassA> ptrl (new ClassA);

//copy the auto ptr
//- transfers ownership from ptrl to ptr2
std::auto ptr<ClassA> ptr2(ptrl);

After the first statement, ptr1 owns the object that was created with the new operator. The
second statement transfers ownership from ptr1 to ptr2. So after the second statement, ptr2
owns the object created with new, and ptrl no longer owns the object. The object created by
new ClassA gets deleted exactly once — when ptr2 gets destroyed.

The assignment operator behaves similarly:

//initialize an auto ptr with a new object
std::auto _ptr<ClassA> ptrl (new ClassAh);
std::auto ptr<ClassA> ptr2; //create another auto ptr

ptr2 = ptrl; //assign the auto ptr
//- transfers ownership from ptrl to ptr2

Here, the assignment transfers ownership from ptril to ptr2. As aresult, ptr2 owns the object
that was previously owned by ptril.

If ptr2 owned an object before an assignment, delete is called for that object:

//initialize an auto ptr with a new object
std::auto ptr<ClassA> ptrl (new ClassAh);
//initialize another auto ptr with a new object
std::auto_ptr<ClassA> ptr2(new ClassAi);

ptr2 = ptril; //assign the auto ptr
//—- delete object owned by ptr2
//- transfers ownership from ptrl to ptr2

Note that a transfer of ownership means that the value is not simply copied. In all cases of
ownership transfer, the previous owner (ptr1 in the previous examples) loses its ownership. As a
consequence the previous owner has the null pointer as its value after the transfer. This is a
significant violation of the general behavior of initializations and assignments in programming
languages. Here, the copy constructor modifies the object that is used to initialize the new object,
and the assignment operator modifies the right-hand side of the assignment. It is up to the
programmer to ensure that an auto_ptr that lost ownership and got the null pointer as value is
no longer dereferenced.

dyne-book 42

The C++ Standard Library

To assign a new value to an auto ptr, this new value must be an auto ptr. You can't
assign an ordinary pointer:

st
auto p

pt

pt
object

Source

d::auto ptr<ClassA> ptr; //create an

tr

r = new ClassA; //ERROR

r = std::auto ptr<ClassA>(new ClassA); //0OK, delete old
// and own new

and Sink

The transfer of ownership implies a special use for auto ptrs; that is, functions can use them to

transfer

ownership to other functions. This can occur in two different ways:

A function can behave as a sink of data. This happens if an auto_ptr is passed as an
argument to the function by value. In this case, the parameter of the called function gets
ownership of the auto ptr. Thus, if the function does not transfer it again, the object
gets deleted on function exit:

void sink(std::auto ptr<ClassA>); //sink () gets ownership

A function can behave as a source of data. When an auto_ptr is returned, ownership of
the returned value gets transferred to the calling function. The following example shows
this technique:

std::auto _ptr<ClassA> f()

{
std:: auto ptr<ClassA> ptr(new ClassAh);
//ptr owns the new object

return ptr; //transfer ownership to calling function

}

void g{()

{
std::auto ptr<ClassA> p;

i=0; i<10; ++i) {
£(); //p gets ownership of the returned object
// (previously returned object of f() gets deleted)

for (int
p:

} //last-owned object of p gets deleted

Each time £ () is called, it creates an object with new and returns the object, along with
its ownership, to the caller. The assignment of the return value to p transfers ownership
to p. In the second and additional passes through the loop, the assignment to p deletes
the object that p owned previously. Leaving g () , and thus destroying p, results in the
destruction of the last object owned by p. In any case, no resource leak is possible. Even
if an exception is thrown, any auto_ptr that owns data ensures that this data is deleted.

dyne-book 43

The C++ Standard Library

Caveat

The semantics of auto_ptr always include ownership, so don't use auto_ptrs in a parameter
list or as a return value if you don't mean to transfer ownership. Consider, for example, the
following naive implementation of a function that prints the object to which an auto ptr refers.
Using it would be a disaster.

//this is a bad example
template <class T>
void bad print (std::auto ptr<T> p)
//p gets ownership of passed argument

{

//does p own an object ?

if (p.get() == NULL) {

std::cout << "NULL";
}
else {
std::cout << *p;

}

} //Oops, exiting deletes the object to which p refers

Whenever an auto_ptr is passed to this implementation of bad print (), the objects it owns
(if any) are deleted. This is because the ownership of the auto ptr that is passed as an
argument is passed to the parameter p, and p deletes the object it owns on function exit. This is
probably not the programmer's intention and would result in fatal runtime errors:

std::auto _ptr<int> p(new int);

*p = 42; //change value to which p refers
bad print (p); //Oops, deletes the memory to which p refers
*p = 18; //RUNTIME ERROR

You might think about passing auto ptrs by reference instead. However, passing auto_ptrs
by reference confuses the concept of ownership. A function that gets an auto ptr by reference
might or might not transfer ownership. Allowing an auto ptr to pass by reference is very bad
design and you should always avoid it.

According to the concept of auto ptrs, it is possible to transfer ownership into a function by
using a constant reference. This is very dangerous because people usually expect that an object
won't get modified when you pass it as a constant reference. Fortunately, there was a late design
decision that made auto ptrs less dangerous. By some tricky implementation techniques,
transfer of ownership is not possible with constant references. In fact, you can't change the
ownership of any constant auto ptr:

const std::auto ptr<int> p(new int);

*p = 42; //change value to which p refers
bad print (p); //COMPILE-TIME ERROR
*p = 18; //OK

This solution makes auto ptrs safer than they were before. Many interfaces use constant
references to get values that they copy internally. In fact, all container classes (see Chapter 6 or
Chapter 10 for examples) of the C++ standard library behave this way, which might look like the
following:

dyne-book 44

The C++ Standard Library

template <class T>
void container::insert (const T& value)

{

X = value; //assign or copy value internally

If such an assignment was possible for auto ptrs, the assignment would transfer ownership
into the container. However, because of the actual design of auto_ptrs, this call results in an
error at compile time:

container<std::auto ptr<int> > c;
const std::auto ptr<int> p(new int);

c.insert (p); //ERROR

All in all, constant auto_ptrs reduce the danger of an unintended transfer of ownership.
Whenever an object is passed via an auto ptr, you can use a constant auto ptr to signal
the end of the chain.

The const does not mean that you can't change the value of the object the auto ptr owns (if
any). You can't change the ownership of a constant auto ptr; however, you can change the
value of the object to which it refers. For example:

std::auto_ptr<int> f()
{
const std::auto ptr<int> p(new int);
//no ownership transfer possible
std::auto_ptr<int> g(new int); //ownership transfer possible

*p = 42; //0OK, change value to which p refers
bad.print (p) ; //COMPILE-TIME ERROR
*p = *q; //0OK, change value to which p refers
p = q; //COMPILE-TIME ERROR
return p; //COMPILE-TIME ERROR

Whenever the const auto_ptr is passed or returned as an argument, any attempt to assign a
new object results in a compile-time error. With respect to the constness, a const auto ptr
behaves like a constant pointer (T* const p) and not like a pointer that refers to a constant
(const T* p); although the syntax looks the other way around.

4.2.3 auto_ptrs as Members

By using auto_ptrs within a class you can also avoid resource leaks. If you use an auto _ptr
instead of an ordinary pointer, you no longer need a destructor because the object gets deleted
with the deletion of the member. In addition, an auto_ptr helps to avoid resource leaks that are
caused by exceptions that are thrown during the initialization of an object. Note that destructors
are called only if any construction is completed. So, if an exception occurs inside a constructor,

dyne-book 45

The C++ Standard Library

destructors are only called for objects that have been fully constructed. This might result in a
resource leak if, for example, the first new was successful but the second was not. For example:

class ClassB {
private:
ClassA* ptrl; //pointer members
ClassA* ptr2;
public:
//constructor that initializes the pointers
//- will cause resource leak if second new throws
ClassB (ClassA vall, ClassA val2)
ptrl (new ClassA(vall)), ptr2(new ClassA(val2)) {

//copy constructor

//—- might cause resource leak if second new throws
ClassB (const ClassB& x)

ptrl (new ClassA(*x.ptrl)), ptr2(new ClassA(*x.ptr2)) {

//assignment operator

const ClassB& operator= (const ClassB& x) {
*ptrl = *x.ptrl;
*ptr2 = *x.ptr2;
return *this;

~ClassB () {
delete ptrl;
delete ptr2;

}i

To avoid such a possible resource leak, you can simply use auto ptrs:

class ClassB {

private:
const std::auto ptr<ClassA> ptrl; //auto_ptr members
const std::auto ptr<ClassA> ptr2;

public:

//constructor that initializes the auto ptrs

//—- no resource leak possible

ClassB (ClassA vall, ClassA val2)

ptrl (new ClassA(vall)), ptr2(new ClassA(val2)) {

//copy constructor

//- no resource leak possible

ClassB (const ClassB& x)

ptrl (new ClassA(*x.ptrl), ptr2(new ClassA(*x.ptr2)) {

dyne-book 46

The C++ Standard Library

}i

//assignment operator

const ClassB& operator= (const ClassB& x) {
*ptrl = *x.ptrl;
*ptr2 = *x.ptr2;
return *this;

//no destructor necessary
// (default destructor lets ptrl and ptr2 delete their objects)

Note, however, that although you can skip the destructor, you still have to program the copy
constructor and the assignment operator. By default, both would try to transfer ownership, which
is probably not the intention. In addition, and as mentioned on page 42, to avoid an unintended
transfer of ownership you should also use constant auto ptrs here if the auto ptr should
refer to the same object throughout its lifetime.

4.2.4 Misusing auto_ptrs

auto ptrs satisfy a certain need; namely, to avoid resource leaks when exception handling is
used. Unfortunately, the exact behavior of auto ptrs changed in the past and no other kind of
smart pointers are provided in the C++ standard library, so people tend to misuse auto_ ptrs.
Here are some hints to help you use them correctly:

1.

auto_ptrs cannot share ownership.

An auto ptr must not refer to an object that is owned by another auto ptr (or other
object). Otherwise, if the first pointer deletes the object, the other pointer suddenly refers
to a destroyed object, and any further read or write access may result in disaster.

auto_ptrs are not provided for arrays.

An auto ptr is not allowed to refer to arrays. This is because an auto ptr calls
delete instead of delete [] for the object it owns. Note that there is no equivalent
class in the C++ standard library that has the auto ptr semantics for arrays. Instead,
the library provides several container classes to handle collections of data (see Chapter
5).

auto_ptrs are not "universal smart pointers."

An auto_ptr is not designed to solve other problems for which smart pointers might be
useful. In particular, they are not pointers for reference counting. (Pointers for reference
counting ensure that an object gets deleted only if the last of several smart pointers that
refer to that object gets destroyed.)

auto_ptrs don't meet the requirements for container elements.

dyne-book 47

The C++ Standard Library

An auto ptr does not meet one of the most fundamental requirements for elements of
standard containers. That is, after a copy or an assignment of an auto ptr, source and
sink are not equivalent. In fact, when an auto ptr is assigned or copied, the source
auto ptr gets modified because it transfers its value rather than copying it. So you
should not use an auto ptr as an element of a standard container. Fortunately, the
design of the language and library prevents this misuse from compiling in a standard-
conforming environment.

Unfortunately, sometimes the misuse of an auto_ptr works. Regarding this, using nonconstant
auto_ptrs is no safer than using ordinary pointers. You might call it luck if the misuse doesn't
result in a crash, but in fact you are unlucky because you don't realize that you made a mistake.

See Section 5.10.2, for a discussion and Section 6.8, for an implementation of a smart pointer
for reference counting. This pointer is useful when sharing elements in different containers.

4.2.5 auto_ptr Examples

The first example shows how auto_ ptrs behave regarding the transfer of ownership:
//util/autoptrl.cpp

#include <iostream>
#include <memory>
using namespace std;

/* define output operator for auto ptr
* - print object value or NULL
*/
template <class T>
ostream& operator<< (ostream& strm, const auto ptr<T>& p)
{

//does p own an object ?

if (p.get() == NULL) {
strm << "NULL"; //NO: print NULL
}
else {
strm << *p; //YES: print the object

}

return strm;

int main ()

{
auto ptr<int> p(new int (42));
auto ptr<int> g;

cout << "after initialization:" << endl;

cout << " p: " << p << endl;
cout << " g: " << g << endl;
q = p;

dyne-book 48

The C++ Standard Library

cout << "after assigning auto pointers:" << endl;

cout << " p: " << p << endl;

cout << " g: " << g << endl;

*q += 13; //change value of the object q owns
p =49

cout << "after change and reassignment:" << endl;

cout << " p: " << p << endl;

cout << " g: " << g << endl;

The output of the program is as follows:

after initialization:

p: 42

g: NULL
after assigning auto pointers:
p: NULL

g: 42
after change and reassignment:
p: 55

g: NULL

Note that the second parameter of the output operator function is a constant reference. So it uses
auto.ptrs without any transfer of ownership.

As mentioned on page 40, bear in mind that you can't initialize an auto ptr by using the
assignment syntax or assign an ordinary pointer:

std::auto ptr<int> p(new int (42)); //OK
std::auto ptr<int> p = new int(42); //ERROR

p = std::auto ptr<int>(new int (42)); //OK
new int (42); //ERROR

o]
Il

This is because the constructor to create an auto_ptr from an ordinary pointer is declared as
explicit (see Section 2.2.6, for an introduction of explicit).

The following example shows how constant auto ptrs behave:
//util/autoptr2.cpp

#include <iostream>
#include <memory>
using namespace std;

/* define output operator for auto ptr
* - print object value or NULL
*/

template <class T>

dyne-book 49

The C++ Standard Library

Oostream& operator<<

{

(ostream& strm, const auto ptr<T>& p)

//does p own an object ?
if (p.get() == NULL)
strm << "NULL";

}

else

}

{

strm << *p;

return strm;

int main ()

{

//

//
//

{

//NO: print NULL

//YES: print the object

const auto ptr<int> p(new int(42));
const auto ptr<int> g(new int (0));
const auto ptr<int> r;
"after initialization:" << endl;

cout
cout
cout
cout

r =

<<
<<
<<
<<

= *p’-
= *p;
- -77;

<<
<<
<<
<<

= p;

bs

" p: " << p << endl;
" g: " << g << endl;
"r: " << r << endl;

//ERROR: undefined behavior
"after assigning values:" << endl;
" p: " << p << endl;

" g: " << g << endl;
"r: " << r << endl;

//ERROR at compile time

//ERROR at compile time

Here, the output of the program is as follows:

after initialization:

after assigning values:

p: 42
g: 0

r: NULL
p: =77
q: 42
r: NULL

This example defines an output operator for auto_ptrs. To do this, it passes an auto_ptr as a
constant reference. According to the discussion on page 43, you should usually not pass an
auto_ptr in any form. This function is an exception to this rule.

Note that the assignment

dyne-book

50

The C++ Standard Library

*r = *p;

is an error. It dereferences an auto_ptr that refers to no object. According to the standard, this
results in undefined behavior; for example, a crash. As you can see, you can manipulate the
objects to which constant auto ptrs refer, but you can't change which objects they own. Even if
r was nonconstant, the last statement would not be possible because it would change the
constant p.

4.2.6 Class auto_ptr in Detail

Class auto_ptr is declared in <memory>:

#include <memory>

It provides auto ptr as a template class for any types in namespace std. The following is the
exact declaration of the class auto ptr:®

1] This is a slightly improved version that fixes some minor problems of the version in the C++ standard
(auto_ptr ref is global now and there is an assignment operator from auto ptr ref to auto ptr;
see page 55).

namespace std {
//auxiliary type to enable copies and assignments
template <class Y> struct auto ptr ref {};

template<class T>
class auto ptr {
public:
//type names for the value
typedef T element type;

//constructor
explicit auto ptr(T* ptr = 0) throw();

//copy constructors (with implicit conversion)
//—- note: nonconstant parameter

auto ptr(auto ptré&) throw();

template<class U> auto ptr(auto ptr<uU>&) throw();

//assignments (with implicit conversion)
//—- note: nonconstant parameter
auto ptré& operator= (auto ptré&) throw();
template<class U>
auto ptré& operator= (auto ptr<U>&) throw();

//destructor
~auto ptr() throw();

dyne-book 51

The C++ Standard Library

//value access

T* get () const throw();
T& operator* () const throw();
T* operator->() const throw();

//release ownership
T* release () throw();

//reset value
void reset (T* ptr = 0) throw();

auto ptr(auto ptr ref<T>) throw();

//special conversions to enable copies and assignments
public:

auto ptré& operator= (auto ptr ref<T> rhs) throw();

template<class U> operator auto ptr ref<U>()

throw () ;

template<class U> operator auto ptr<U>() throw();

s

The individual members are described in detail in the following sections, in which aufo_ptr is an
abbreviation for auto ptr<T>. A complete sample implementation of class auto ptr is

located on page 56.
Type Definitions
auto_ptr:: element_type

e The type of the object that the auto ptr owns.
Constructors, Assignments, and Destructors
auto_ptr::auto_ptr () throw ()

e The default constructor.

e Creates an auto_ptr that does not own an object.

e Initializes the value of the auto ptr with zero.

explicit auto_ptr::auto_ptr (T* ptr) throw ()

e Creates an auto_ptr that owns and points to the object to which ptr refers.
e After the call, *this is the owner of the object to which pir refers. There must be no

other owner.

e If ptris not the null pointer, it must be a value returned by new because the destructor of
the auto ptr calls delete automatically for the object it owns.
e ltis not correct to pass the return value of a new array that was created by new[]. (For
arrays, the STL container classes, which are introduced in Section 5.2, should be used.)

dyne-book

52

The C++ Standard Library

auto_ptr::auto_ptr (auto ptré& ap) throw ()
template<class U> auto_ptr:;auto_ptr (auto ptr<U>& ap) throw()

The copy constructor (for nonconstant values).

Creates an auto ptr that adopts the ownership of the object ap owned on entry. The
ownership of an object to which ap referred on entry (if any) is transferred to *this.
After the operation, ap no longer owns an object. Its value becomes the null pointer.
Thus, in contrast to the usual implementation of a copy constructor, the source object
gets modified.

Note that this function is overloaded with a member template (see page 11 for an
introduction to member templates). This enables automatic type conversions from the
type of ap to the type of the created auto_ptr; for example, to convert an auto ptr to
an object of a derived class into an auto_ptr to an object of a base class.

See Section 4.2.2, for a discussion of the transfer of ownership.

auto_ptr& auto_ptr::operator = (auto _ptrs ap) throw()
template<class U> auto_ptr& auto_ptr::operator = (auto ptr<U>& ap) throw ()

The assignment operator (for nonconstant values).

Deletes the object it owns on entry (if any) and adopts the ownership of the object that ap
owned on entry. Thus, the ownership of an object to which ap referred on entry (if any) is
transferred to *this.

After the operation, ap no longer owns an object. Its value becomes the null pointer.
Thus, in contrast to the usual implementation of an assignment operator, the source
object gets modified.

The object to which the auto ptr on the left-hand side of the assignment (*this)
refers is deleted by calling delete for it.

Note that this function is overloaded with a member template (see page 11 for an
introduction to member templates). This enables automatic type conversions from the
type of ap to the type of *this; for example, to convert an auto_ptr to an object of a
derived class into an auto_ptr to an object of a base class.

See Section 4.2.2, for a discussion about the transfer of ownership.

auto_ptr::~auto_ptr () throw ()

The destructor.
If the auto_ptr owns an object on entry, it calls delete for it.

Value Access

T* auto_ptr::get () const throw ()

Returns the address of the object that the auto ptr owns (if any).

Returns the null pointer if the auto_ptr does not own an object.

This call does not change the ownership. Thus, on exit the auto ptr still owns the
object that it owned on entry (if any). B

T& auto_ptr::operator * () const throw()

The dereferencing operator.
Returns the object that the auto _ptr owns.

dyne-book 53

The C++ Standard Library

e If the auto ptr does not own an object, the call results in undefined behavior (which
may result in a crash).

T* auto_ptr::operator-> () const throw ()

e The operator for member access.

e Returns a member of the object that the auto ptr owns.

e If the auto ptr does not own an object, the call results in undefined behavior (which
may result in a crash).

Value Manipulation
T* auto_ptr::release () throw ()

¢ Releases the ownership of the object that the auto ptr owns.
e Returns the address of the object that the auto ptr owned on entry (if any).
¢ Returns the null pointer if the auto ptr does not own an object on entry.

void auto _ptr:reset (T* ptr= 0) throw()

¢ Reinitializes the auto ptr with ptr.

e deletes the object that the auto ptr owns on entry (if any).

e After the call, *this is the owner of the object to which pitr refers. There should be no
other owner.

e If ptris not the null pointer it should be a value returned by new because the destructor of
the auto ptr automatically calls delete for the object it owns.

¢ Note that it is not correct to pass the return value of a new array that was creates by new
[1. (For arrays, the STL container classes, which are introduced in Section 5.2, should
be used.)

Conversions

The rest of the class auto.ptr (auxiliary type auto_ptr ref and functions using it) consists of
rather tricky conversions that enable you to use copy and assignment operations for nonconstant
auto ptrs but not for constant auto ptrs (see page 44 for details). The following is a quick
explanation.”? We have the following two requirements:

17} Thanks to Bill Gibbons for pointing this out.

1. It should be possible to pass auto ptrs to and from functions as rvalues.’® Because
auto ptr is a class, this must be done using a constructor.

18] The names rvalue and Ivalue come originally from the assignment expression expr1 = expr2,
in which the left operand expr1 must be a (modifiable) 1value. However, an 1value is perhaps
better considered as representing an object locator value. Thus, it is an expression that
designates an object by name or address (pointer or reference). Lvalues need not be modifiable.
For example, the name of a constant object is a nonmodifiable 1value. All expressions that are
not 1values are rvalues. In particular, temporary objects created explicitly (T ()) or as the result of
a function call are rvalues.

2. When an auto_ptr is copied, it is important that the source pointer gives up ownership.
This requires that the copy modifies the source auto ptr.

dyne-book 54

The C++ Standard Library

An ordinary copy constructor can copy an rvalue, but to do so it must declare its parameter as a
reference to a const object. To use an ordinary constructor to copy an auto ptr we would
have to declare the data member containing the real pointer mutable so that it could be modified
in the copy constructor. But this would allow you to write code that copies auto ptr objects that
were actually declared const, transferring their ownership in contradiction to their constant
status.

The alternative is to find a mechanism to enable an rvalue to be converted to an Ivalue. A simple
operator conversion function to reference type does not work because an operator conversion
function is never called to convert an object to its own type (remember that the reference attribute
is not part of the type). Thus, the auto _ptr ref class was introduced to provide this convert-to-
Ivalue mechanism. The mechanism relies on a slight difference between the overloading and
template argument deduction rules. This difference is too subtle to be of use as a general
programming tool, but it is sufficient to enable the auto_ptr class to work correctly.

Don't be surprised if your compiler doesn't support the distinction between nonconstant and
constant auto ptrs yet. And be aware that if your compiler does not yet implement this
distinction, your auto_ptr interface is more dangerous. In this case, it is rather easy to transfer
ownership by accident.

Sample Implementation of Class auto_ptr

The following code contains a sample implementation of a standard-conforming auto ptr
classt® :

191 Thanks to Greg Colvin for this implementation of auto.ptr. Note that it does not conform exactly to the
standard. It turned out that the specification in the standard is still not correct regarding the special
conversions encountered using auto_ptr ref. The version presented in this book, hopefully, fixes all the
problems. However, at the writing of this book, there was still ongoing discussion.

// util/autoptr.hpp

/* class auto ptr
*— improved standard conforming implementation
*/
namespace std {
//auxiliary type to enable copies and assignments (now global)
template<class Y>
struct auto ptr ref {

Y* yp;
auto ptr ref (Y* rhs)
yp (rhs) {

}
s

template<class T>
class auto ptr {
private:
T* ap; //refers to the actual owned object (if any)
public:
typedef T element type;

dyne-book 55

The C++ Standard Library

//constructor

explicit auto ptr (T* ptr = 0) throw()
ap (ptr) {

}

//copy constructors (with implicit conversion)

//—- note: nonconstant parameter

auto ptr (auto ptré& rhs) throw()
ap (rhs. release()) {

}

template<class Y>

auto ptr (auto ptr<¥>& rhs) throw()
ap(rhs.release()) {

}

//assignments (with implicit conversion)

//—- note: nonconstant parameter

auto ptré& operator= (auto ptré& rhs) throw() |
reset (rhs.release());
return *this;

}

template<class Y>

auto ptré& operator= (auto ptr<¥>& rhs) throw()
reset (rhs.release());
return *this;

//destructor
~auto ptr() throw() {
delete ap;

//value access

T* get () const throw() {
return ap;

}

T& operator* () const throw() {
return *ap;

}

T* operator->() const throw() {
return ap;

}

//release ownership
T* release () throw() {
T* tmp (ap) ;
ap = 0;
return tmp;

//reset value

{

dyne-book

56

The C++ Standard Library

void reset (T* ptr=0) throw() {
if (ap != ptr) {
delete ap;
ap = ptr;

/* special conversions with auxiliary type to enable copies
and assignments
*/
auto ptr(auto ptr ref<T> rhs) throw()
ap (rhs.yp) {
}
auto ptré& operator= (auto ptr ref<T> rhs) throw() { //new
reset (r.yp);
return *this;
}
template<class Y>
operator auto ptr ref<¥>() throw() {
return auto ptr ref<¥Y>(release());
}
template<class Y>
operator auto ptr<Y>() throw() {
return auto ptr<¥>(release());
}
bi

4.3 Numeric Limits

Numeric types in general have platform-dependent limits. The C++ standard library provides
these limits in the template numeric limits. These numeric limits replace and supplement the
ordinary preprocessor constants of C. These constants are still available for integer types in
<climits> and <limits.h>, and for floating-point types in <cfloat> and <float.h>. The
new concept of numeric limits has two advantages: First, it offers more type safety. Second, it
enables a programmer to write templates that evaluate these limits.

The numeric limits are discussed in the rest of this section. Note, however, that it is always better

to write platform-independent code by using the minimum guaranteed precision of the types.
These minimum values are provided in Table 4.1.

Table 4.1. Minimum Size of Built-in Types

Type Minimum Size
char 1 byte (8 bits)
short int 2 bytes
int 2 bytes
long int 4 bytes
float 4 bytes
double 8 bytes
long double 8 bytes

dyne-book 57

The C++ Standard Library

Class numeric_limits<>

Usually you use templates to implement something once for any type. However, you can also use
templates to provide a common interface that is implemented for each type, where it is useful.
You can do this by providing specialization of a general template. numeric limits is a typical
example of this technique, which works as follows:

e A general template provides the default numeric values for any type:

namespace std {
/* general numeric limits as default for any type
*/
template <class T>
class numeric limits {
public:
//no specialization for numeric limits exist
static const bool is specialized = false;

//other members that are meaningless for the general
numeric limits

i
}

This general template of the numeric limits says simply that there are no numeric limits
available for type T. This is done by setting the member is specializedto false.

e Specializations of the template define the numeric limits for each numeric type as follows:

namespace std {
/* numeric limits for int
* — implementation defined
*/
template<> class numeric limits<int> {
public:
//yves, a specialization for numeric limits of int does
exist
static const bool is specialized = true;

static T min() throw() {
return -2147483648;

}

static T max () throw() {
return 2147483647;

}

static const int digits = 31;

dyne-book 58

The C++ Standard Library

Here, is specializedis setto true, and all other members have the values of the
numeric limits for the particular type.

The general numeric limits template and its standard specializations are provided in the
header file <1imits>. The specializations are provided for any fundamental type that can
represent numeric values: bool, char, signed char, unsigned char, wchar t,
short, unsigned short, int, unsigned int, long, unsigned long, float,
double, and long double. They can be supplemented easily for user-defined numeric types.

Table 4.2 and Table 4.3 list all members of the class numeric 1limits<> and their meanings.
Applicable corresponding C constants for these members are given in the right column of the
tables (they are defined in <climits>, <limits.h>, <cfloat>, and <float.h>).

Table 4.2. Members of Class numeric_limits<>, Part1

Member Meaning C Constants

is specialized
is signed
is_integer

is _exact

is bounded

is modulo

is _iecb559

min ()

max ()

digits

digitsl0

radix

min exponent
max exponent

min_ exponentlO

Type has specialization for numeric limits
Type is signed

Type is integer

Calculations produce no rounding errors
(true for all integer types)

The set of values representable is finite
(true for all built-in types)

Adding two positive numbers may wrap to a
lesser result

Conforms to standards IEC 559 and IEEE
754

Minimum finite value (minimum normalized
value for floating-point types with
denormalization; meaningful if is
.bounded || !is_ signed)

Maximum finite value (meaningful if

is bounded)

Character,Integer: number of nonsigned bits |CHAR BIT

(binary digits)

Floating point: number of radix digits (see |[FLT_MANT_ DIG, ...
below) in the mantissa

Number of decimal digits (meaningful if
is bounded)

INT MIN,FLT MIN,
CHAR MIN, ...

INT MAX,FLT MAX, ...

FLT.DIG, ...

Integer: base of the representation (almost
always two)

Floating point: base of the exponent
representation

Minimum negative integer exponent for base FLT MIN EXP, ...
radix

Maximum positive integer exponent for base FLT MAX EXP, ...
radix

FLT RADIX

Minimum negative integer exponent for base FLT_MIN_10_EXP, ...
10

dyne-book

59

The C++ Standard Library

max_exponentl0 Maximum positive integer exponent for base |FLT MAX 10 EXP, ...

10

epsilon () Difference of one and least value greater FLT EPSILON, ...
than one

round style Rounding style (see page 63)

round_error () Measure of the maximum rounding error
(according to standard ISO/IEC 10967-1)

has infinity Type has representation for positive infinity

infinity () Representation of positive infinity if available

has quiet NaN Type has representation for nonsignaling
"Not a Number"

quiet NaN () Representation of quiet "Not a Number" if
available

has signaling NaN Type has representation for signaling "Not a
Number"

signaling NaN () |Representation of signaling "Not a Number"
if available

Table 4.3. Members of Class numeric_limits<>, Part2

Member Meaning C
Constants

has denorm Whether type allows denormalized values (variable numbers of
exponent bits, see page 63)

has denorm loss|Loss of accuracy is detected as a denormalization loss rather
than as an inexact result

denorm min () Minimum positive denormalized value
traps Trapping is implemented
tinyness_before|Tinyness is detected before rounding

The following is a possible full specialization of the numeric limits for type float, which is
platform dependent. It also shows the exact signatures of the members:

namespace std {
class numeric limits<float> ({
public:
//yves, a specialization for numeric limits of float does exist
static const bool is specialized = true;

inline static float min() throw() {
return 1.17549435E-38F;

}

inline static float max () throw() {
return 3.40282347E+38F;

}

static const int digits = 24;
static const int digitsl0 = 6;

dyne-book 60

The C++ Standard Library

static const bool is signed = true;
static const bool is integer = false;
static const bool is exact = false;
static const bool is bounded = true;

static const bool is modulo = false;
static const bool is iec559 = true;
static const int radix = 2;

inline static float epsilon() throw() {

return 1.19209290E-07F;
}

static const float round style round style
= round to nearest;

inline static float round error() throw() {
return 0.5F;

}

static const int min exponent = -125;
static const int max exponent = +128;
static const int min exponentlO = -37;

static const int max exponentlO 38;

static const bool has infinity = true;

inline static float infinity() throw() { return ...; }
static const bool has quiet NaN = true;

inline static float quiet NaN() throw() { return ...; }
static const bool has signaling NaN = true;

inline static float signaling NaN() throw() { return ...; }
static const float denorm style has denorm = denorm absent;
static const bool has denorm loss = false;

inline static float denorm rain() throw() { return min(); }
static const bool traps = true;

static const bool tinyness before = true;

Note that all nonfunction members are constant and static so that their values can be determined
at compile time. For members that are denned by functions, the value might not be defined
clearly at compile time on some implementations. For example, the same object code may run on
different processors and may have different values for floating values.

The values of round_style are shown in Table 4.4. The values of has denorm are shown in
Table 4.5. Unfortunately, the member has denorm is not called denorm style. This
happened because during the standardization process there was a late change from a Boolean to
an enumerative value. However, you can use the has denorm member as a Boolean value

dyne-book 61

The C++ Standard Library

because the standard guarantees that denorm absent is 0, which is equivalent to false,
whereas denorm present is 1 and denorm indeterminate is -1, both of which are
equivalent to true. Thus, you can consider has denorm a Boolean indication of whether the
type may allow denormalized values.

Table 4.4. Round Style of numeric_limits<>

Round Style Meaning
round toward zero Rounds toward zero
round_to nearest Rounds to the nearest representable value
round toward infinity Rounds toward positive infinity
round toward neg infinity Rounds toward negative infinity
round indeterminate Indeterminable

Table 4.5. Denormalization Style of numeric_limits<>

Denorm Style Meaning
denorm absent The type does not allow denormalized values
denorm present The type does allow denormalized values to the nearest

representable value
denorm indeterminate|Indeterminable

Example of Using numeric_limits<>

The following example shows possible uses of some numeric limits, such as the maximum values
for certain types and determining whether char is signed.

// util/limitsl.cpp

#include <iostream>
#include <limits>
#include <string>
using namespace std;

int main ()

{
//use textual representation for bool
cout << boolalpha;

//print maximum of integral types

cout << "max(short): " << numeric limits<short>::max() << endl;
cout << "max (int): " << numeric limits<int>::max() << endl;
cout << "max(long): " << numeric limits<long>::max() << endl;

cout << endl;

//print maximum of floating-point types
cout << "max (float): "

<< numeric limits<float>::max() << endl;
cout << "max (double): "

<< numeric limits<double>::max () << endl;

dyne-book 62

The C++ Standard Library

cout <<
<<

cout <<

//print
cout <<

<<
cout <<

//print

"max (long double): "
numeric limits<long double>::max () << endl;
endl;

whether char is signed

"is signed(char): "

numeric limits<char>::is signed << endl;
endl;

whether numeric limits for type string exist

cout << "is specialized(string): "
<< numeric limits<string>::is specialized << endl;

The output of this program is platform dependent. Here is a possible output of the program:

max (short) :
2147483647

max (int) :
max (long) :

max (float) :
max (double) :

32767

2147483647

3.40282e+38
1.79769e+308

max (long double): 1.79769e+308

is signed(char): false

is specialized(string): false

The last line shows that there are no numeric limits defined for the type string. This makes

sense because strings are not numeric values. However, this example shows that you can query

for any arbitrary type whether or not it has numeric limits defined.

4.4 Auxiliary Functions

The algorithm library (header file <algorithm>) includes three auxiliary functions, one each for

the selection of the minimum and maximum of two values and one for the swapping of two

values.

4.4.1 Processing the Minimum and Maximum

The functions to process the minimum and the maximum of two values are defined in
<algorithm> as follows:

namespace std {
template <class T>

inline

const T& min (const T& a, const T& b) {

return b < a ? b : a;

dyne-book

63

The C++ Standard Library

template <class T>
inline const T& max (const T& a, const T& b) {
return a < b ? b : a;

If both values are equal, generally the first element gets returned. However, it is not good
programming style to rely on this.

Both functions are also provided with the comparison criterion as an additional argument:

namespace std {
template <class T, class Compare>
inline const T& min (const T& a, const T& b, Compare comp) {
return comp(b,a) ? b : a;

template <class T, class Compare>
inline const T& max (const T& a, const T& b, Compare comp) {
return comp(a,b) ? b : a;

The comparison argument might be a function or a function object that compares both arguments
and returns whether the first is less than the second in some particular order (function objects are
introduced in Section 5.9).

The following example shows how to use the maximum function by passing a special comparison
function as an argument:

// util/minmaxl.cpp

#include <algorithm>
using namespace std;

/* function that compares two pointers by comparing the values to
which they point
*/
bool int ptr less (int* a, int* D)
{
return *a < *b;

}

int main()

{
int x = 17;
int y = 42;
int* px = &x;
int* py = &y;

dyne-book 64

The C++ Standard Library

int* pmax;

//call max () with special comparison function
pmax = max (px, py, int ptr less);

Note that the definition of min () and max () require that both types match. Thus, you can't call
them for objects of different types:

inti;
long 1;

1 = std::max (i, 1) ; //ERROR: argument types don't match

However, you could qualify explicitly the type of your arguments (and thus the return type):

1 = std::max<long>(i,1l) ; //OK

4.4.2 Swapping Two Values

The function swap () is provided to swap the values of two objects. The general implementation
of swap () is defined in <algorithm> as follows:

namespace std {
template<class T>
inline void swap(T& a, T& b) {

T tmp(a);
a = b;
b = trap;

By using this function you can have two arbitrary variables x and y swap their values by calling

std::swap (x,Vy);

Of course, this call is possible only if the copy constructions and assignments inside the swap ()
function are possible.

The big advantage of using swap () is that it enables to provide special implementations for more
complex types by using template specialization or function overloading. These special
implementations might save time by swapping internal members rather than by assigning the
objects. This is the case, for example, for all standard containers (Section 6.1.2) and strings
(Section 11.2.8). For example, a swap () implementation for a simple container that has only
an array and the number of elements as members could look like this:

class MyContainer {

dyne-book 65

The C++ Standard Library

private:
int* elems; //dynamic array of elements
int numElems; //number of elements
public:

//implementation of swap ()
void swap (MyContaineré& x) {
std: :swap(elems,x.elems) ;
std: :swap (numElems, x.numElems) ;

}i

//overloaded global swap () for this type
inline void swap (MyContaineré& cl, MyContaineré& c2)
{

cl. swap (c2); //calls implementation of swap ()

}

So, calling swap () instead of swapping the values directly might result in substantial
performance improvements. You should always offer a specialization of swap () for your own
types if doing so has performance advantages.

4.5 Supplementary Comparison Operators

Four template functions define the comparison operators | =, >, <=, and >= by calling the
operators == and <. These functions are defined in <utility> as follows:

namespace std {
namespace rel ops {
template <class T>

inline bool operator!= (const T& x, const T& y) {
return ! (x == y);
bool operator== (const X& x) const;

bool operator< (const X& x) const;

}s

void foo ()

{
using namespace std::rel ops; //make !'=, >, etc., available
X x1, x2;
if (x1 '= x2) {

dyne-book 66

The C++ Standard Library

if (x1 > x2) {

}

Note that these operators are defined in a subnamespace of std, called rel ops. The reason
that they are in a separate namespace is so that users who define their own relational operators
in the global namespace won't clash even if they made all identifiers of namespace std global by
using a general using directive:

using namespace std; //operators are not in global scope

On the other hand, users who want to get their hands on them explicitly can implement the
following without having to rely on lookup rules to find them implicitly:

using namespace std::rel ops ; //operators are in global scope

Some implementations define the previous templates by using two different argument types:

namespace std {
template <class T1l, class T2>
inline bool operator!=(const Tl& x, const T2& y) {
return !(x == vy);

}

The advantage of such an implementation is that the types of the operands may differ (provided
the types are comparable). But, note that this kind of implementation is not provided by the C++
standard library. Thus, taking advantage of it makes code nonportable.

4.6 Header Files <cstddef> and <cstdlib>

Two header files compatible with C are often used in C++ programs: <cstddef> and
<cstdlib>. They are the new versions of the C header files <stddef.h> and <stdlib.h>,
and they define some common constants, macros, types, and functions.

4.6.1 Definitions in <cstddef>

Table 4.6 shows the definitions of the <cstddef> header file. NULL is often used to indicate
that a pointer points to nothing. It is simply the value 0 (either as an int or as a 1ong). Note that
in C, NULL often is defined as (void*)0. This is incorrect in C++ because there the type of
NULL must be an integer type. Otherwise, you could not assign NULL to a pointer. This is
because in C++ there is no automatic conversion from void* to any other type.*® Note that
NULL is also defined in the header files <cstdio>, <cstdlib>, <cstring>, <ctime>,
<cwchar>, and <clocale>.

dyne-book 67

The C++ Standard Library

(191 pye to the mess with the type of NULL, several people and style guides recommend not using NULL in
C++. Instead, 0 or a special user-defined constant such as NIL might work better. However, | use it, so you
will find it in my examples in this book.

Table 4.6. Definitions in <cstddef>

Identifier Meaning
NULL Pointer value for "not defined" or "no value"
size t Unsigned type for size units (such as number of elements)
ptrdiff t Signed type for differences of pointer
offsetof () Offset of a member in a structure or union

4.6.2 Definitions in <cstdlib>

Table 4.7 shows the most important definitions of the <cstdlib> header file. The two constants
EXIT SUCCESS and EXIT FAILURE are defined as arguments for exit () . They can also be
used as a return value in main () .

The functions that are registered by atexit () are called at normal program termination in

reverse order of their registration. It doesn't matter whether the program exits due to a call of
exit () orthe end of main () . No arguments are passed.

Table 4.7. Definitions in <cstdlib>

Definition Meaning
exit (int status) Exit program (cleans up static objects)
EXIT.SUCCESS Indicates a normal end of the program
EXIT.FAILURE Indicates an abnormal end of the program
abort () Abort program (might force a crash on some systems)
atexit (void (*function)()) Call function on exit

The exit () and abort () functions are provided to terminate a program in any function without
going back to main () :

e exit() destroys all static objects, flushes all buffers, closes all /0O channels, and
terminates the program (including calling atexit () functions). If functions passed to
atexit () throw exceptions, terminate () is called.

e abort () terminates a program immediately with no clean up.

None of these functions destroys local objects because no stack unwinding occurs. To ensure
that the destructors of all local objects are called, you should use exceptions or the ordinary
return mechanism to return to and exit main () .

dyne-book 68

The C++ Standard Library

Chapter 5. The Standard Template Library

The heart of the C++ standard library, the part that influenced its overall architecture, is the
standard template library (STL). The STL is a generic library that provides solutions to managing
collections of data with modern and efficient algorithms. It allows programmers to benefit from
innovations in the area of data structures and algorithms without needing to learn how they work.

From the programmer's point of view, the STL provides a bunch of collection classes that meet
different needs, together with several algorithms that operate on them. All components of the STL
are templates, so they can be used for arbitrary element types. But the STL does even more: It
provides a framework for supplying other collection classes or algorithms for which existing
collection classes and algorithms work. All in all, the STL gives C++ a new level of abstraction.
Forget programming dynamic arrays, linked lists, and binary trees; forget programming different
search algorithms. To use the appropriate kind of collection, you simply define the appropriate
container and call the member functions and algorithms to process the data.

The STL's flexibility, however, has a price, chief of which is that it is not self-explanatory.
Therefore, the subject of the STL fills several chapters in this book. This chapter introduces the
general concept of the STL and explains the programming techniques needed to use it. The first
examples show how to use the STL and what to consider while doing so. Chapters 6 through 9
discuss the components of the STL (containers, iterators, function objects, and algorithms) in
detail and present several more examples.

5.1 STL Components

The STL is based on the cooperation of different well-structured components, key of which are
containers, iterators, and algorithms:

e Containers are used to manage collections of objects of a certain kind. Every kind of
container has its own advantages and disadvantages, so having different container types
reflects different requirements for collections in programs. The containers may be
implemented as arrays or as linked lists, or they may have a special key for every
element.

e Iterators are used to step through the elements of collections of objects. These
collections may be containers or subsets of containers. The major advantage of iterators
is that they offer a small but common interface for any arbitrary container type. For
example, one operation of this interface lets the iterator step to the next element in the
collection. This is done independently of the internal structure of the collection.
Regardless of whether the collection is an array or a tree, it works. This is because every
container class provides its own iterator type that simply "does the right thing" because it
knows the internal structure of its container.

The interface for iterators is almost the same as for ordinary pointers. To increment an
iterator you call operator ++. To access the value of an iterator you use operator *. So,
you might consider an iterator a kind of a smart pointer that translates the call "go to the
next element" into whatever is appropriate.

e Algorithms are used to process the elements of collections. For example, they can
search, sort, modify, or simply use the elements for different purposes. Algorithms use
iterators. Thus, an algorithm has to be written only once to work with arbitrary containers
because the iterator interface for iterators is common for all container types.

dyne-book 69

The C++ Standard Library

To give algorithms more flexibility you can supply certain auxiliary functions called by the
algorithms. Thus, you can use a general algorithm to suit your needs even if that need is
very special or complex. For example, you can provide your own search criterion or a
special operation to combine elements.

The concept of the STL is based on a separation of data and operations. The data is managed by
container classes, and the operations are defined by configurable algorithms. Iterators are the
glue between these two components. They let any algorithm interact with any container (Figure
5.1).

Figure 5.1. STL Components

.
Container
irﬁ:_r e S
T
- B w/‘i\ - B
i — Algorithm | Iterator Container
u-“"'-“c,'l
Contamner S

.
e

In a way, the STL concept contradicts the original idea of object-oriented programming: The STL
Separates data and algorithms rather than combining them. However, the reason for doing so is
very important. In principle, you can combine every kind of container with every kind of algorithm,
so the result is a very flexible but still rather small framework.

One fundamental aspect of the STL is that all components work with arbitrary types. As the name
"standard template library" indicates, all components are templates for any type (provided the
type is able to perform the required operations). Thus the STL is a good example of the concept
of generic programming. Containers and algorithms are generic for arbitrary types and classes
respectively.

The STL provides even more generic components. By using certain adapters and function objects
(or functors) you can supplement, constrain, or configure the algorithms and the interfaces for
special needs. However, I'm jumping the gun. First, | want to explain the concept step-by-step by
using examples. This is probably the best way to understand and become familiar with the STL.

5.2 Containers

Container classes, or containers for short, manage a collection of elements. To meet different
needs, the STL provides different kinds of containers, as shown in Figure 5.2.

dyne-book 70

The C++ Standard Library

Figure 5.2. STL Container Types

Vector: Set/Multiset:

A [T e Map/Multimap:
List: Ej l:l
<2 R R m O

There are two general kinds of containers:

1. Sequence containers are ordered collections in which every element has a certain
position. This position depends on the time and place of the insertion, but it is
independent of the value of the element. For example, if you put six elements into a
collection by appending each element at the end of the actual collection, these elements
are in the exact order in which you put them. The STL contains three predefined
sequence container classes: vector, deque, and list.

2. Associative containers are sorted collections in which the actual position of an element
depends on its value due to a certain sorting criterion. If you put six elements into a
collection, their order depends only on their value. The order of insertion doesn't matter.
The STL contains four predefined associative container classes: set, multiset,
map, and multimap.

An associative container can be considered a special kind of sequence container because sorted
collections are ordered according to a sorting criterion. You might expect this especially if you
have used other libraries of collection classes like those in Smalltalk or the NIHCL,™! in which
sorted collections are derived from ordered collections. However, note that the STL collection
types are completely distinct from each other. They have different implementations that are not
derived from each other.

[1] The National Institute of Health's Class Library was one of the first class libraries in C++.

The automatic sorting of elements in associative containers does not mean that those containers
are especially designed for sorting elements. You can also sort the elements of a sequence
container. The key advantage of automatic sorting is better performance when you search
elements. In particular, you can always use a binary search, which results in logarithmic
complexity rather than linear complexity. For example, this means that for a search in a collection
of 1,000 elements you need, on average, only 10 instead of 500 comparisons (see Section 2.3).
Thus, automatic sorting is only a (useful) "side effect" of the implementation of an associative
container, designed to enable better performance.

The following subsections discuss the different container classes in detail. Among other aspects,
they describe how containers are typically implemented. Strictly speaking, the particular
implementation of any container is not defined inside the C++ standard library. However, the
behavior and complexity specified by the standard do not leave much room for variation. So, in
practice, the implementations differ only in minor details. Chapter 6 covers the exact behavior of

dyne-book 71

The C++ Standard Library

the container classes. It describes their common and individual abilities, and member functions in
detail.

5.2.1 Sequence Containers

The following sequence containers are predefined in the STL:

e \Vectors
e Deques
e Lists

In addition you can use strings and ordinary arrays as a (kind of) sequence container.
Vectors

A vector manages its elements in a dynamic array. It enables random access, which means you
can access each element directly with the corresponding index. Appending and removing
elements at the end of the array is very fast.[?’ However, inserting an element in the middle or at
the beginning of the array takes time because all the following elements have to be moved to
make room for it while maintaining the order.

(2 Strictly speaking, appending elements is amortized very fast. An individual append may be slow, when a
vector has to reallocate new memory and to copy existing elements into the new memory. However,
because such reallocations are rather rare, the operation is very fast in the long term. See page 22 for a
discussion of complexity.

The following example defines a vector for integer values, inserts six elements, and prints the
elements of the vector:

// stl/vectorl.cpp

#include <iostream>
#include <vector>
using namespace std;

int main ()

{

vector<int> coll; //vector container for integer elements

// append elements with values 1 to 6
for (int i=1; i<=6; ++i) {

coll.push back(i);
}

//print all elements followed by a space
for (int i=0; i<coll.size(); ++i) {
cout << coll[i] << " ';

}

cout << endl;

With

#include <vector>

dyne-book 72

The C++ Standard Library

the header file for vectors is included.
The declaration

vector<int> coll;

creates a vector for elements of type int. The vector is not initialized by any value, so the
default constructor creates it as an empty collection.

The push back () function appends an element to the container:
coll.push back(i);

This member function is provided for all sequence containers.

The size () member function returns the number of elements of a container:
for (int i=0; i<coll.size(); ++i) {
}

This function is provided for any container class.

By using the subscript operator [], you can access a single element of a vector:
cout << coll[i] << " ';

Here the elements are written to the standard output, so the output of the whole program is as
follows:

123456

Deques

The term deque (it rhymes with "check" 1) is an abbreviation for "double-ended queue." It is a
dynamic array that is implemented so that it can grow in both directions. Thus, inserting elements
at the end and at the beginning is fast. However, inserting elements in the middle takes time
because elements must be moved.

131 It is only a mere accident that "deque" also sounds like "hack” :-).

The following example declares a deque for floating-point values, inserts elements from 1.1 to 6.6
at the front of the container, and prints all elements of the deque:

// stl/dequel.cpp

#include <iostream>
#include <deque>
using namespace std;

int main ()

{

deque<float> coll; //deque container for floating-point elements

dyne-book 73

The C++ Standard Library

//insert elements from 1.1 to 6.6 each at the front
for (int i=1; 1i<=6; ++1) {

coll.push front(i*1l. 1); //insert at the front
}

//print all elements followed by a space
for (int i1=0; i<coll.size(); ++1i) {
cout << collf[i] << ' ';
}
cout << endl;

}
In this example, with
#include <deque>

the header file for deques is included.
The declaration

deque<float> coll;

creates an empty collection of floating-point values.
The push_ front () function is used to insert elements:

coll.push front (i*1l.1);

push front () inserts an element at the front of the collection. Note that this kind of insertion
results in a reverse order of the elements because each element gets inserted in front of the
previous inserted elements. Thus, the output of the program is as follows:

6.6 5.5 4.4 3.3 2.2 1.1

You could also insert elements in a deque by using the push back () member function. The
push front () function, however, is not provided for vectors because it would have a bad
runtime for vectors (if you insert an element at the front of a vector, all elements have to be
moved). Usually, the STL containers provide only those special member functions that in general
have "good" timing ("good" timing normally means constant or logarithmic complexity). This
prevents a programmer from calling a function that might cause bad performance.

Lists

A list is implemented as a doubly linked list of elements. This means each element in a list has
its own segment of memory and refers to its predecessor and its successor. Lists do not provide
random access. For example, to access the tenth element, you must navigate the first nine
elements by following the chain of their links. However, a step to the next or previous element is
possible in constant time. Thus, the general access to an arbitrary element takes linear time (the
average distance is proportional to the number of elements). This is a lot worse than the
amortized constant time provided by vectors and deques.

The advantage of a list is that the insertion or removal of an element is fast at any position. Only
the links must be changed. This implies that moving an element in the middle of a list is very fast
compared with moving an element in a vector or a deque.

dyne-book 74

The C++ Standard Library

The following example creates an empty list of characters, inserts all characters from 'a' to
'z', and prints all elements by using a loop that actually prints and removes the first element of
the collection:

// stl/listl.cpp

#include <iostream>
#include <list>
using namespace std;
int main ()

{

list<char> coll; //1ist container for character elements

// append elements from 'a' to 'z'

for (char c='a'; c<= "' z '; ++c) {
coll.push back(c);

}

/* print all elements
* - while there are elements
* - print and remove the first element
*/
while (! coll.empty()) {
cout << coll.front() << ' ';
coll.pop front();
}

cout << endl;

As usual, the header file for lists, <list>, is used to define a collection of type 1ist for
character values:

list<char> coll;

The empty () member function returns whether the container has no elements. The loop
continues as long as it returns true (that is, the container contains elements):

while (! coll.empty()) {

Inside the loop, the front () member function returns the actual first element:

cout << coll.front () << " ';

The pop_ front () function removes the first element:

coll.pop front();

Note that pop front () does not return the element it removed. Thus, you can't combine the
previous two statements into one.

dyne-book 75

The C++ Standard Library

The output of the program depends on the actual character set. For the ASCII character set, it is
as follows ™1 ;

(4] For other character sets the output may contain characters that aren't letters or it may even be empty (if
'z' is not greater than 'a').

abcdefghijklmnopgrstuvwzixyz

Of course it is very strange to "print" the elements of a list by a loop that outputs and removes the
actual first element. Usually, you would iterate over all elements. However, direct element access
by using operator [] is not provided for lists. This is because lists don't provide random access,
and thus using operator [] would cause bad performance. There is another way to loop over the
elements and print them by using iterators. After their introduction | will give an example (if you
can't wait, go to page 84).

Strings

You can also use strings as STL containers. By strings | mean objects of the C++ string classes
(basic string<>, string, and wstring), which are introduced in Chapter 11). Strings

are similar to vectors except that their elements are characters. Section 11.2.13, provides
details.

Ordinary Arrays

Another kind of container is a type of the core C and C++ language rather than a class: an
ordinary array that has static or dynamic size. However, ordinary arrays are not STL containers
because they don't provide member functions such as size () and empty () . Nevertheless, the
STL's design allows you to call algorithms for these ordinary arrays. This is especially useful
when you process static arrays of values as an initializer list.

The usage of ordinary arrays is nothing new. What is new is using algorithms for them. This is
explained in Section 6.7.2.

Note that in C++ it is no longer necessary to program dynamic arrays directly. Vectors provide all
properties of dynamic arrays with a safer and more convenient interface. See Section 6.2.3, for
details.

5.2.2 Associative Containers

Associative containers sort their elements automatically according to a certain ordering criterion.
This criterion takes the form of a function that compares either the value or a special key that is
defined for the value. By default, the containers compare the elements or the keys with operator
<. However, you can supply your own comparison function to define another ordering criterion.

Associative containers are typically implemented as binary trees. Thus, every element (every
node) has one parent and two children. All ancestors to the left have lesser values; all ancestors
to the right have greater values. The associative containers differ in the kind of elements they
support and how they handle duplicates.

The following associative containers are predefined in the STL. Because you need iterators to
access their elements, | do not provide examples until page 87, where | discuss iterators.

dyne-book 76

The C++ Standard Library

e Sets

A set is a collection in which elements are sorted according to their own values. Each
element may occur only once, thus duplicates are not allowed.

e Multisets

A multiset is the same as a set except that duplicates are allowed. Thus, a multiset
may contain multiple elements that have the same value.

e Maps

A map contains elements that are key/value pairs. Each element has a key that is the
basis for the sorting criterion and a value. Each key may occur only once, thus duplicate
keys are not allowed. A map can also be used as an associative array, which is an array
that has an arbitrary index type (see page 91 for details).

e Multimaps

A multimap is the same as a map except that duplicates are allowed. Thus, a multimap
may contain multiple elements that have the same key. A multimap can also be used as
dictionary. See page 209 for an example.

All of these associative container classes have an optional template argument for the sorting
criterion. The default sorting criterion is the operator <. The sorting criterion is also used as
the test for equality; that is, two elements are equal if neither is less than the other.

You can consider a set as a special kind of map, in which the value is identical to the key. In fact,
all of these associative container types are usually implemented by using the same basic
implementation of a binary tree.

5.2.3 Container Adapters

In addition to the fundamental container classes, the C++ standard library provides special
predefined container adapters that meet special needs. These are implemented by using the
fundamental containers classes. The predefined container adapters are as follows:

e Stacks

The name says it all. A stack is a container that manages its elements by the LIFO (last-
in-first-out) policy.

e Queues

A queue is a container that manages its elements by the FIFO (first-in-first-out) policy.
That is, it is an ordinary buffer.

e Priority Queues

A priority queue is a container in which the elements may have different priorities. The
priority is based on a sorting criterion that the programmer may provide (by default,
operator < is used). A priority queue is, in effect, a buffer in which the next element is

dyne-book 77

The C++ Standard Library

always the element that has the highest priority inside the queue. If more than one
element has the highest priority, the order of these elements is undefined.

Container adapters are historically part of the STL. However, from a programmer's view point,
they are just special containers that use the general framework of the containers, iterators, and
algorithms provided by the STL. Therefore, container adapters are described apart from the STL
in Chapter 10.

5.3 Iterators

An iterator is an object that can "iterate" (navigate) over elements. These elements may be all or
part of the elements of a STL container. An iterator represents a certain position in a container.
The following fundamental operations define the behavior of an iterator:

e Operator *

Returns the element of the actual position. If the elements have members, you can use
operator -> to access those members directly from the iterator.

151 In some older environments, operator -> might not work yet for iterators.
e Operator ++

Lets the iterator step forward to the next element. Most iterators also allow stepping
backward by using operator —-.

e Operators ==and I=
Return whether two iterators represent the same position.
e Operator =
Assigns an iterator (the position of the element to which it refers).

These operations are exactly the interface of ordinary pointers in C and C++ when they are used
to iterate over the elements of an array. The difference is that iterators may be smart pointers —
pointers that iterate over more complicated data structures of containers. The internal behavior of
iterators depends on the data structure over which they iterate. Hence, each container type
supplies its own kind of iterator. In fact, each container class defines its iterator type as a nested
class. As a result, iterators share the same interface but have different types. This leads directly
to the concept of generic programming: Operations use the same interface but different types, so
you can use templates to formulate generic operations that work with arbitrary types that satisfy
the interface.

All container classes provide the same basic member functions that enable them to use iterators
to navigate over their elements. The most important of these functions are as follows:

e begin()

Returns an iterator that represents the beginning of the elements in the container. The
beginning is the position of the first element (if any).

dyne-book 78

The C++ Standard Library

e end()

Returns an iterator that represents the end of the elements in the container. The end is
the position behind the last element. Such an iterator is also called a past-the-end
iterator.

Thus, begin () and end () define a half-open range that includes the first element but excludes
the last (Figure 5.3). A half-open range has two advantages:

Figure 5.3. begin () and end () for Containers

begin(} end ()

1. You have a simple end criterion for loops that iterate over the elements: They simply

continue as long as end () is not reached.

2. It avoids special handling for empty ranges. For empty ranges, begin () is equal to

end () .

Here is an example demonstrating the use of iterators. It prints all elements of a list container (it is
the promised enhanced version of the first list example).

// stl/list2.cpp

#include <iostream>
#include <list>
using namespace std;

int main ()

{

list<char> coll; //1ist container for character elements

// append elements from 'a' to 'z'

for (char c='a'; c<='z"'; ++c) {
coll.push back(c);

}

/*print all elements
* - iterate over all elements

*/
list<char>::const iterator pos;
for (pos = coll.begin(); pos != coll.end(); ++pos)

cout << *pos << ' !

}

dyne-book

79

The C++ Standard Library

cout << endl;

After the list is created and filled with the characters 'a' through 'z', all elements are printed
within a for loop:

list<char>::const iterator pos;
for (pos = coll.begin(); pos != coll.end(); ++pos) {
cout << *pos << ' ';

The iterator pos is declared just before the loop. Its type is the iterator type for constant element
access of its container class:

list<char>::const iterator pos;

Every container defines two iterator types:
1. container::iterator
is provided to iterate over elements in read/write mode.
2. container: : const iterator
is provided to iterate over elements in read-only mode.

For example, in class 1ist the definitions might look like the following:

namespace std {
template <class T>
class list {

public:
typedef ... iterator;
typedef ... const iterator;

The exact type of iterator and const iterator is implementation defined.

Inside the for loop, the iterator pos first gets initialized with the position of the first element:
pos = coll.begin ()

The loop continues as long as pos has not reached the end of the container elements:
pos != coll.end()

Here, pos is compared with the past-the-end iterator. While the loop runs the increment operator,
++pos havigates the iterator pos to the next element.

dyne-book 80

The C++ Standard Library

All in all, pos iterates from the first element, element-by-element, until it reaches the end (Figure
5.4). If the container has no elements, the loop does not run because coll.begin () would
equal coll.end() .

Figure 5.4. Iterator pos Iterating Over Elements of a List

begin() end()

. 4
.
Y

M
A
A

| =

In the body of the loop, the expression *pos represents the actual element. In this example, it is
written followed by a space character. You can't modify the elements because a
const_iterator is used. Thus, from the iterator's point of view the elements are constant.
However, if you use a nonconstant iterator and the type of the elements is nonconstant, you can
change the values. For example:

//make all characters in the list uppercase

list<char>::iterator pos;

for (pos = coll.begin(); pos != coll.end(); ++pos) {
*pos = toupper (*pos) ;

}

Note that the preincrement operator (prefix ++) is used here. This is because it might have better
performance than the postincrement operator. The latter involves a temporary object because it
must return the old position of the iterator. For this reason, it generally is best to prefer ++pos
over pos++. Thus, you should avoid the following version:

for (pos = coll.begin(); pos != coll.end(); pos++) {
AANAN // OK, but slower

}
For this reason, | recommend using the preincrement and pre-decrement operators in general.
5.3.1 Examples of Using Associative Containers

The iterator loop in the previous example could be used for any container. You only have to
adjust the iterator type. Now you can print elements of associative containers. The following are
some examples of the use of associative containers.

Examples of Using Sets and Multisets

The first example shows how to insert elements into a set and to use iterators to print them:

dyne-book 81

The C++ Standard Library

// stl/setl.cpp

#include <iostream>
#include <set>

int main ()

{
//type of the collection
typedef std::set<int> IntSet;

IntSet coll; //set container for int values

/* insert elements from 1 to 6 in arbitray order
*—~ value 1 gets inserted twice
*/
coll.insert (3)
coll.insert (1)
coll.insert (5)
coll.insert (4);
(1)
(6)
(2)

coll.insert
coll.insert
coll.insert

/* print all elements
*— iterate over all elements

*/
IntSet::const iterator pos;
for (pos = coll.begin(); pos != coll.end(); ++pos) {
std::cout << *pos << ' ';

;td::cout << std::endl;
}
As usual, the include directive
#include <set>
defines all necessary types and operations of sets.
The type of the container is used in several places, so first a shorter type name gets defined:

typedef set<int> IntSet;

This statement defines type IntSet as a set for elements of type int. This type uses the
default sorting criterion, which sorts the elements by using operator <. This means the elements
are sorted in ascending order. To sort in descending order or use a completely different sorting
criterion, you can pass it as a second template parameter. For example, the following statement
defines a set type that sorts the elements in descending order ! :

18] Note that you have to put a space between the two ">" characters. ">>" would be parsed as shift
operator, which would result in a syntax error.

typedef set<int,greater<int> > IntSet;

dyne-book 82

The C++ Standard Library

greater<> is a predefined function object that is discussed in Section 5.9.2. For a sorting
criterion that uses only a part of the data of an object (such as the ID) see Section 8.1.1.

All associative containers provide an insert () member function to insert a new element:

coll.insert (3);
coll.insert (1);

The new element receives the correct position automatically according to the sorting criterion.
You can't use the push back () or push front () functions provided for sequence containers.
They make no sense here because you can't specify the position of the new element.

After all values are inserted in any order, the state of the container is as shown in Figure 5.5.
The elements are sorted into the internal tree structure of the container so that the value of the
left child of an element is always less (with respect to the actual sorting criterion) and the value of
the right child of an element is always greater. Duplicates are not allowed in a set, so the
container contains the value 1 only once.

Figure 5.5. A Set that Has Six Elements

.

1 3 5

To print the elements of the container, you use the same loop as in the previous list example. An
iterator iterates over all elements and prints them:

IntSet::const iterator pos;
for (pos = coll.begin(); pos != coll.end(); ++pos) {
cout << *pos << ' ';

}

Again, because the iterator is defined by the container, it does the right thing, even if the internal
structure of the container is more complicated. For example, if the iterator refers to the third

dyne-book 83

The C++ Standard Library

element, operator ++ moves to the fourth element at the top. After the next call of operator ++ the
iterator refers to the fifth element at the bottom (Figure 5.6).

Figure 5.6. Iterator pos Iterating over Elements of a Set

The output of the program is as follows:
123456

If you want to use a multiset rather than a set, you need only change the type of the container
(the header file remains the same):

typedef multiset<int> IntSet;

A multiset allows duplicates, so it would contain two elements that have value 1. Thus, the output
of the program would change to the following:

1123456

Examples of Using Maps and Multimaps

The elements of maps and multimaps are key/value pairs. Thus, the declaration, the insertion,
and the access to elements are a bit different. Here is an example of using a multimap:

dyne-book 84

The C++ Standard Library

// stl/mmapl.cpp

#include <iostream>
#include <map>
#include <string>
using namespace std;

int main ()
{
//type of the collection
typedef multimap<int, string> IntStringMMap;

IntStringMMap coll; //set container for int/string values

//insert some elements in arbitrary order
//- a value with key 1 gets inserted twice
coll.insert (make pair (5 "tagged"));
coll.insert (make pair(2,"a"));
coll.insert (make pair (1 "thls"))'
coll.insert (make pair(4,"of"));
((6
((1
((3

coll.insert (make pair (6,"strings"));
coll.insert (make pair(1l,"is"));
coll.insert (make pair (3, "multimap"));

/* print all element values
*— iterate over all elements
*— element member second 1is the value

*/
IntStringMMap: :iterator pos;
for (pos = coll.begin(); pos != coll.end(); ++pos) {

A} A}

cout << pos->second << ;

}

cout << endl;

The program may have the following output:

this is a multimap of tagged strings

However, because "this" and "is" have the same key, their order might be the other way
around.

When you compare this example with the set example on page 87, you can see the following two
differences:

1. The elements are key/value pairs, so you must create such a pair to insert it into the
collection. The auxiliary function make pair () is provided for this purpose. See page
203 for more details and other possible ways to insert a value.

2. The iterators refer to key/value pairs. Therefore, you can't just print them as a whole.
Instead, you must access the members of the pair structure, which are called first
and second (type pair is introduced in Section 4.1). Thus, the expression

pos->second

dyne-book 85

The C++ Standard Library

yields the second part of the key/value pair, which is the value of the multimap element.
As with ordinary pointers, the expression is defined as an abbreviation for [”!

[7] In some older environments, operator -> might not work yet for iterators. In this case, you

must use the second version.

(*pos) .second

Similarly, the expression

pos->first

Multimaps can also be used as dictionaries. See page 209 for an example.

Maps as Associative Arrays

yields the first part of the key/value pair, which is the key of the multimap element.

In the previous example, if you replace type multimap with map you would get the output without
duplicate keys (the values might still be the same). However, a collection of key/value pairs with
unique keys could also be thought of as an associative array. Consider the following example:

// stl/mapl.cpp

#include <iostream>
#include <map>
#include <string>
using namespace std;

int main ()

{

/* type of the container:

* - map: elements key/value pairs

* - string: keys have type string

¥ — float: values have type float

*/
typedef map<string, float> StringFloatMap;
StringFloatMap coll;

//insert some elements into the collection

coll["VAT"] = 0.15;

coll["Pi"] = 3.1415;

coll["an arbitrary number"] = 4983.223;
coll["Null"] = 0;

/*print all elements
* - iterate over all elements
* - element member first is the key

* — element member second 1is the value
*/
StringFloatMap::iterator pos;
for (pos = coll.begin(); pos != coll.end(); ++pos)

cout << "key: \"" << pos->first << "\" "

{

dyne-book

86

The C++ Standard Library

<< "value: " << pos->second << endl;

The declaration of the container type must specify both the type of the key and the type of the
value:

typedef map<string, float> StringFloatMap;

Maps enable you to insert elements by using the subscript operator []:

coll["VAT"] = 0.15;

coll["Pi"] = 3.1415;

coll["an arbitrary number"] = 4983.223;
coll["Null"] = 0;

Here, the index is used as the key and may have any type. This is the interface of an associative
array. An associative array is an array in which the index may be of an arbitrary type.

Note that the subscript operator behaves differently than the usual subscript operator for arrays:
Not having an element for an index is not an error. A new index (or key) is taken as a reason to
create and to insert a new element of the map that has the index as the key. Thus, you can't have
a wrong index. Therefore, in this example in the statement

coll["Null"] = 0;
the expression

coll["Null"]

creates a new element that has the key "Null". The assignment operator assigns 0 (which gets
converted into float) as the value. Section 6.6.3, discusses maps as associative arrays in
more detail.

You can't use the subscript operator for multimaps. Multimaps allow multiple elements that have
the same key, so the subscript operator makes no sense because it can handle only one value.
As shown on page 90, you must create key/value pairs to insert elements into a multimap. You
can do the same with maps. See page 202 for details.

Similar to multimaps, for maps to access the key and the value of an element you have to use the
first and second members of the pair structure. The output of the program is as follows:

key: "Null" value: O

key: "Pi" wvalue: 3.1415

key: "VAT" wvalue: 0.15

key: "an arbitrary number" value: 4983.22

5.3.2 Iterator Categories

Iterators can have capabilities in addition to their fundamental operations. The additional abilities
depend on the internal structure of the container type. As usual, the STL provides only those
operations that have good performance. For example, if containers have random access (such as

dyne-book 87

The C++ Standard Library

vectors or deques) their iterators are also able to perform random access operations (for
example, positioning the iterator directly at the fifth element).

Iterators are subdivided into different categories that are based on their general abilities. The
iterators of the predefined container classes belong to one of the following two categories:

1. Bidirectional iterator

As the name indicates, bidirectional iterators are able to iterate in two directions: forward,
by using the increment operator, and backward, by using the decrement operator. The
iterators of the container classes 1ist, set, multiset, map, and multimap are
bidirectional iterators.

2. Random access iterator

Random access iterators have all the properties of bidirectional iterators. In addition, they
can perform random access. In particular, they provide operators for "iterator arithmetic"
(in accordance with "pointer arithmetic" of an ordinary pointer). You can add and subtract
offsets, process differences, and compare iterators by using relational operators such as
< and >. The iterators of the container classes vector and deque, and iterators of
strings are random access iterators.

Other iterator categories are discussed in Section 7.2.

To write generic code that is as independent of the container type as possible, you should not use
special operations for random access iterators. For example, the following loop works with any
container:

for (pos = coll.begin(); pos != coll.end(); ++pos) {

}

However, the following does not work with all containers:

for (pos = coll.begin() ; pos < coll.end(); ++pos) {

}

The only difference is the use of operator < instead of operator != in the condition of the loop.
Operator < is only provided for random access iterators, so this loop does not work with lists,
sets, and maps. To write generic code for arbitrary containers, you should use operator ! = rather
than operator <. However, doing so might lead to code that is less safe. This is because you may
not recognize that pos gets a position behind end () (see Section 5.11, for more details about
possible errors when using the STL). It's up to you to decide which version to use. It might be a
question of the context, or it might even be a question of taste.

To avoid misunderstanding, note that | am talking about "categories" and not "classes." A
category only defines the abilities of iterators. The type doesn't matter. The generic concept of the
STL works with pure abstraction; that is, anything that behaves like a bidirectional iterator is a
bidirectional iterator.

dyne-book 88

The C++ Standard Library

5.4 Algorithms

The STL provides several standard algorithms for the processing of elements of collections.
These algorithms offer general fundamental services, such as searching, sorting, copying,
reordering, modifying, and numeric processing.

Algorithms are not member functions of the container classes. Instead, they are global functions
that operate with iterators. This has an important advantage: Instead of each algorithm being
implemented for each container type, all are implemented only once for any container type. The
algorithm might even operate on elements of different container types. You can also use the
algorithms for user-defined container types. All in all, this concept reduces the amount of code
and increases the power and the flexibility of the library.

Note that this is not an object-oriented programming paradigm; it is a generic functional
programming paradigm. Instead of data and operations being unified, as in object-oriented
programming, they are separated into distinct parts that can interact via a certain interface.
However, this concept also has its price: First, the usage is not intuitive. Second, some
combinations of data structures and algorithms might not work. Even worse, a combination of a
container type and an algorithm might be possible but not useful (for example, it may lead to bad
performance). Thus, it is important to learn the concepts and the pitfalls of the STL to benefit from
it without abusing it. | provide examples and more details about this throughout the rest of this
chapter.

Let's start with a simple example of the use of STL algorithms. Consider the following program,
which shows some algorithms and their usage:

// stl/algol.cpp

#include <iostream>
#include <vector>

#include <algorithm>
using namespace std;

int main ()

{
vector<int> coll;
vector<int>::iterator pos;

//insert elements from 1 to 6 in arbitrary order

coll.push back(2);

coll.push back(5

coll.push back(

coll.push back(
(
(

’

)
) ;
) ;
).
)

r

coll.push back

4
1
6
coll.push back (3

’

//find and print minimum and maximum elements
pos = min element (coll.begin(), coll.end());

cout << "min: " << *pos << endl;
pos = max _element (coll.begin(), coll.end());
cout << "max: " << *pos << endl;

//sort all elements
sort (coll.begin(), coll.end());

//find the first element with value 3

dyne-book 89

The C++ Standard Library

pos = find (coll.begin(), coll.end(), //range
3); //value

//reverse the order of the found element with value 3 and all
following elements
reverse (pos, coll.end());

//print all elements
for (pos=coll.begin(); pos!=coll.end(); ++pos) {

cout << *pos << ' ' ;

}

cout << endl;

To be able to call the algorithms, you must include the header file <algorithm>:
#include <algorithm>

The first two algorithms called are min_element () and max_element () . They are called with
two parameters that define the range of the processed elements. To process all elements of a
container you simply use begin() and end(). Both algorithms return an iterator for the
minimum and maximum elements respectively. Thus, in the statement

pos = min element (coll.begin(), coll.end());

the min element () algorithm returns the position of the minimum element (if there is more than
one, the algorithm returns the first). The next statement prints that element:

cout << "min: " << *pos << endl;
Of course, you could do both in one statement:
cout << *max element (coll.begin(), coll.end()) << endl;

The next algorithm called is sort () . As the name indicates, it sorts the elements of the range
defined by the two arguments. As usual, you could pass an optional sorting criterion. The default
sorting criterion is operator <. Thus, in this example all elements of the container are sorted in
ascending order:

sort (coll.begin(), coll.end());
So afterward, the vector contains the elements in this order:

123456

The find () algorithm searches for a value inside the given range. In this example, it searches
the first element that is equal to the value 3 in the whole container:

pos = find (coll.begin(), coll.end(), //range
3)7 //value

If the £ind () algorithm is successful, it returns the iterator position of the element found. If it
fails, it returns the end of the range, the past-the-end iterator, which is passed as the second
argument. In this example, the value 3 is found as the third element, so afterward pos refers to
the third element of col1l.

dyne-book 90

The C++ Standard Library

The last algorithm called in the example is reverse (), which reverses the elements of the
passed range. Here the third element that was found by the £ind () algorithms and the past-the-
end iterator are passed as arguments:

reverse (pos, coll.end());

This call reverses the order of the third element up to the last one. The output of the program is
as follows:

min: 1
max: 6
126543

5.4.1 Ranges

All algorithms process one or more ranges of elements. Such a range might, but is not required
to, embrace all elements of a container. Therefore, to be able to handle subsets of container
elements, you pass the beginning and the end of the range as two separate arguments rather
than the whole collection as one argument.

This interface is flexible but dangerous. The caller must ensure that the first and second
arguments define a valid range. This is the case if the end of the range is reachable from the
beginning by iterating through the elements. This means, it is up to the programmer to ensure
that both iterators belong to the same container and that the beginning is not behind the end. If
this is not the case, the behavior is undefined and endless loops or forbidden memory access
may result. In this respect, iterators are just as unsafe as ordinary pointers. But note that
undefined behavior also means that an implementation of the STL is free to find such kinds of
errors and handle them accordingly. The following paragraphs show that ensuring that ranges are
valid is not always as easy as it sounds. See Section 5.11, for more details about the pitfalls
and safe versions of the STL.

Every algorithm processes half-open ranges. Thus, a range is defined so that it includes the

position used as the beginning of the range but excludes the position used as the end. This
concept is often described by using the traditional mathematical notations for half-open ranges:

[begin,end)
or
[begin,end[
| use the first alternative in this book.
The half-open range concept has the advantages that were described on page 84 (it is simple
and avoids special handling for empty collections). However, it also has some disadvantages.
Consider the following example:
// stl/findl.cpp
#include <iostream>

#include <list>
#include <algorithm>

dyne-book 91

The C++ Standard Library

using namespace std;

int main ()

{
list<int> coll;
list<int>::iterator pos;

//insert elements from 20 to 40

for (int i=20; i<=40; ++i) {
coll.push back(i);

}

/*find position of element with value 3

* - there is none, so pos gets coll.end()
*/
pos = find (coll .begin() , coll.end(), //range
3); //value

/*reverse the order of elements between found element and the end
* - because pos 1is coll.end() it reverses an empty range
*/

reverse (pos, coll.end());

//find positions of values 25 and 35
list<int>::iterator pos25, pos35;
pos25 = find (coll.begin(), coll.end(), //range

25); //value
pos35 = find (coll.begin(), coll.end(), //range
35); //value

/*print the maximum of the corresponding range
* - note: including pos25 but excluding pos35
*/
cout << "max: " << *max element (posz25, pos35) << endl;

//process the elements including the last position
cout << "max: " << *max element (pos25, ++pos35) << endl;

In this example, the collection is initialized with integral values from 20 to 40. When the search
for an element with the value 3 fails, find() returns the end of the processed range
(coll.end () in this example) and assigns it to pos. Using that return value as the beginning of
the range in the following call of reverse () poses no problem because it results in the following
call:

reverse (coll.end(), coll.end()):;

This is simply a call to reverse an empty range. Thus, it is an operation that has no effect (a so-
called "no-op").

However, if find () is used to find the first and the last elements of a subset, you should
consider that passing these iterator positions as a range will exclude the last element. So, the first
call of max_element ()

max_ element (pos25, pos3)5)

dyne-book 92

The C++ Standard Library

finds 34 and not 35:
max: 34

To process the last element, you have to pass the position that is one past the last element:
max element (pos25, ++pos35)

Doing this yields the correct result:

max: 35

Note that this example uses a list as the container. Thus, you must use operator ++ to get the
position that is behind pos35. If you have random access iterators, as with vectors and deques,
you also could use the expression pos35 + 1. This is because random access iterators allow
"iterator arithmetic" (see Section 2, page 93, and Section 7.2.5, for details).

Of course, you could use pos25 and pos35 to find something in that subrange. Again, to search
including pos35 you have to pass the position after pos35. For example:

//increment pos35 to search with its value included

++pos35;

pos30 = find(pos25,pos35, //range
30); //value

if (pos30 == pos35) {

cout << "30 is in NOT the subrange" << endl;
}
else {

cout << "30 is in the subrange" << endl;

}

All the examples in this section work only because you know that pos25 is in front of pos35.
Otherwise, [pos25, pos35) would not be a valid range. If you are not sure which element is in
front, things are getting more complicated and undefined behavior may occur.

Suppose you don't know whether the element that has value 25 is in front of the element that has
value 35. It might even be possible that one or both values are not present. By using random
access iterators, you can call operator < to check this:

if (pos25 < pos35) {
//only [pos25,pos35) is valid

}
else if (pos35 < pos25) {
//only [pos35,pos25) is valid

}
else {
//both are equal, so both must be end()

dyne-book 93

The C++ Standard Library

However, without random access iterators you have no simple, fast way to find out which iterator
is in front. You can only search for one iterator in the range of the beginning to the other iterator
or in the range of the other iterator to the end. In this case, you should change your algorithm as
follows: Instead of searching for both values in the whole source range, you should try to find out,
while searching for them, which value comes first. For example:

pos25 = find (coll.begin(), coll.end(), //range
25); //value
pos35 = find (coll.begin(), pos25, //range
35) ; //value
if (pos35 != pos25) {

/*pos35 is in front of pos25
*so, only [pos35,pos25) is valid
*/

}
else {
pos35 = find (pos25, coll.end(), //range
35); //value
if (pos35 != pos25) {
/*pos25 is in front of pos35
*so, only [pos25,pos35) is valid
*/

}

else {
// both are equal, so both must be end/()

In contrast to the previous version, here you don't search for pos35 in the full range of all
elements of coll. Instead, you first search for it from the beginning to pos25. Then, if it's not
found, you search for it in the part that contains the remaining elements after pos25. As a result
you know which iterator position comes first and which subrange is valid.

This implementation is not very efficient. A more efficient way to find the first element that either
has value 25 or value 35 is to search exactly for that. You could do this by using some abilities of
the STL that are not introduced yet as follows:

pos = find if (coll.begin(), coll.end(), //range
compose f gx hx(logical or<bool>(), //criterion
bind2nd(equal to<int>(), 25),
bind2nd(equal to<int>(), 35)));
switch (*pos) {
case 25:
//element with value 25 comes first
pos25 = pos;

pos35 = find (++pos, coll.end(), //range
35); //value
break;
case 35:

//element with value 35 comes first
pos35 = pos;

dyne-book 94

The C++ Standard Library

pos25 = find (++pos, coll.end(), //range
25) ; //value
break;
default:

//no element with value 25 or 35 found

break;

Here, a special expression is used as a sorting criterion that allows a search of the first element
that has either value 25 or value 35. The expression is a combination of several predefined
function objects, which are introduced in Section 5.9.2, and Section 8.2, and a supplementary
function object compose f gx hx, which is introduced in Section 8.3.1.

5.4.2 Handling Multiple Ranges

Several algorithms process more than one range. In this case you usually must define both the
beginning and the end only for the first range. For all other ranges you need to pass only their
beginnings. The ends of the other ranges follow from the number of elements of the first range.
For example, the following call of equal () compares all elements of the collection coll1
element-by-element with the elements of co112 beginning with its first element:

if (equal (colll.begin(), colll.end(),
coll2.begin())) {

}

Thus, the number of elements of col112 that are compared with the elements of colll is
specified indirectly by the number of elements in co111.

This leads to an important consequence: When you call algorithms for multiple ranges, make sure
the second and additional ranges have at least as many elements as the first range. In particular,
make sure that destination ranges are big enough for algorithms that write to collections!

Consider the following program:
// stl/copyl.cpp

#include <iostream>
#include <vector>
#include <list>
#include <algorithm>
using namespace std;

int main ()

{
list<int> colll;
vector<int> coll2;

//insert elements from 1 to 9

for (int 1i=1; i<=9; ++1i) {
colll.push back(i);

}

dyne-book 95

The C++ Standard Library

//RUNTIME ERROR:

// - overwrites nonexisting elements in the destination
copy (colll .begin(), colll.end(), //source
coll2.begin()); //destination

Here, the copy () algorithm is called. It simply copies all elements of the first range into the
destination range. As usual, for the first range, the beginning and the end are defined, whereas
for the second range, only the beginning is specified. However, the algorithm overwrites rather
than inserts. So, the algorithm requires that the destination has enough elements to be
overwritten. If there is not enough room, as in this case, the result is undefined behavior. In
practice, this often means that you overwrite whatever comes after the co112.end () . If you're
in luck, you'll get a crash; at least then you'll know that you did something wrong. However, you
can force your luck by using a safe version of the STL for which the undefined behavior is defined
as leading to a certain error handling procedure (see Section 5.11.1).

To avoid these errors, you can (1) ensure that the destination has enough elements on entry, or
(2) use insert iterators. Insert iterators are covered in Section 5.5.1. Il first explain how to
modify the destination so that it is big enough on entry.

To make the destination big enough, you must either create it with the correct size or change its
size explicitly. Both alternatives apply only to sequence containers (vectors, deques, and lists).
This is not really a problem because associative containers cannot be used as a destination for
purposes for overwriting algorithms (Section 5.6.2, explains why). The following program shows
how to increase the size of containers:

// stl/copy2.cpp

#include <iostream>
#include <vector>
#include <list>
#include <deque>
#include <algorithm>
using namespace std;

int main ()

{
list<int> colll;
vector<int> coll2;

//insert elements from 1 to 9

for (int i=1; 1<=9; ++1) {
colll.push back(i);

}

//resize destination to have enough room for the overwriting
algorithm
coll2.resize (colll. size()):

/*copy elements from first into second collection
*— overwrites existing elements in destination
*/

dyne-book 96

The C++ Standard Library

copy (colll.begin(), colll.end(), //source
coll2.begin()); //destination

/*create third collection with enough room
*-— initial size 1s passed as parameter
*/
deque<int> coll3(colll size());
//copy elements from first into third collection

copy (colll.begin(), colll.end(), //source
coll3.begin()); //destination

Here, resize () is used to change the number of elements in the existing container co112:
coll2.resize (colll.size());

coll3 is initialized with a special initial size so that it has enough room for all elements of
colll:

deque<int> coll3(colll.size());
Note that both resizing and initializing the size create new elements. These elements are

initialized by their default constructor because no arguments are passed to them. You can pass
an additional argument both for the constructor and for resize () to initialize the new elements.

5.5 lterator Adapters

lterators are pure abstractions: Anything that behaves like an iterator is an iterator. For this
reason, you can write classes that have the interface of iterators but do something (completely)
different. The C++ standard library provides several predefined special iterators: iterator adapters.
They are more than auxiliary classes; they give the whole concept a lot more power.

The following subsections introduce three iterator adapters:

1. Insert iterators
2. Stream iterators
3. Reverse iterators

Section 7.4, will cover them in detail.

5.5.1 Insert Iterators

The first example of iterator adapters are insert iterators, or inserters. Inserters are used to let
algorithms operate in insert mode rather than in overwrite mode. In particular, they solve the
problem of algorithms that write to a destination that does not have enough room: They let the
destination grow accordingly.

Insert iterators redefine their interface internally as follows:

dyne-book 97

The C++ Standard Library

e If you assign a value to their actual element, they insert that value into the collection to
which they belong. Three different insert iterators have different abilities with regard to
where the elements are inserted — at the front, at the end, or at a given position.

e A call to step forward is a no-op.

Consider the following example:
// stl/copy3.cpp

#include <iostream>
#include <vector>
#include <list>
#include <deque>
#include <set>
#include <algorithm>
using namespace std;

int main ()

{
list<int> colll;

//insert elements from 1 to 9 into the first collection
for (int i=1; 1i<=9; ++1i) {

colll.push back(i);
}

// copy the elements of colll into coll2 by appending them
vector<int> coll2;
copy (colll.begin(), colll.end(), //source

back inserter (coll2)); //destination

//copy the elements of colll into coll3 by inserting them at the
front
// - reverses the order of the elements
deque<int> coll3;
copy (colll.begin(), colll.end(), //source
front_inserter(coll3)); //destination

//copy elements of colll into coll4

// - only inserter that works for associative collections

set<int> coll4;

copy (colll.begin(), colll.end(), //source
inserter(colld,colld.begin())); //destination

This example uses all three predefined insert iterators:
1. Back inserters

Back inserters insert the elements at the back of their container (appends them) by
calling push back () . For example, with the following statement, all elements of co111
are appended into col12:

copy (colll.begin(), colll.end(), //source

dyne-book 98

The C++ Standard Library

back inserter (coll2)); //destination

Of course, back inserters can be used only for containers that provide push_back() as a
member function. In the C++ standard library, these containers are vector, deque, and
list.

2. Frontinserters

Front inserters insert the elements at the front of their container by calling
push front (). For example, with the following statement, all elements of col11 are
inserted into co113:

copy (colll.begin(), colll.end(), //source
front inserter (coll3)) ; //destination

Note that this kind of insertion reverses the order of the inserted elements. If you insert 1
at the front and then 2 at the front, the 1 is after the 2.

Front inserters can be used only for containers that provide push front () as a
member function. In the C++ standard library, these containers are deque and 1ist.

3. General inserters

A general inserter, also called simply an inserter, inserts elements directly in front of the
position that is passed as the second argument of its initialization. It calls the insert ()
member function with the new value and the new position as arguments. Note that all
predefined containers have such an insert () member function. This is the only
predefined inserter for associative containers.

But wait a moment. | said that you can't specify the position of a new element in an
associative container because the positions of the elements depend on their values. The
solution is simple: For associative containers, the position is taken as a hint to start the
search for the correct position. If the position is not correct, however, the timing may be
worse than if there was no hint. Section 7.5.2, describes a user-defined inserter that is
more useful for associative containers.

Table 5.1 lists the functionality of insert iterators. Additional details are described in Section
7.4.2.

Table 5.1. Predefined Insert Iterators
Expression Kind of Inserter
back inserter (container) |Appends inthe same order by using push back ()
front inserter (container) |Inserts atthe frontin reverse order by using push front ()
inserter (container,pos) Inserts at pos (in the same order) by using insert ()

5.5.2 Stream lterators

Another very helpful kind of iterator adapter is a stream iterator. Stream iterators are iterators that
read from and write to a stream. ¥ Thus, they provide an abstraction that lets the input from the
keyboard behave as a collection, from which you can read. Similarly you can redirect the output
of an algorithm directly into a file or onto the screen.

dyne-book 99

The C++ Standard Library

[8] A stream is an object that represents I/O channels (see Chapter 13).

Consider the following example. It is a typical example of the power of the whole STL. Compared
with ordinary C or C++, it does a lot of complex processing by using only a few statements:

// stl/ioiterl.cpp

#include
#include
#include
#include

<iostream>
<vector>
<string>
<algorithm>

using namespace std;

int main ()

{

vector<string> coll;

/*read all words from the standard input
* - source: all strings until end-of-file (or error)
* - destination: coll (inserting)

*/

CcCopy

(istream iterator<string>(cin), //start of source
istream iterator<string>(), //end of source
back inserter (coll)); //destination

//sort elements

sort

(coll.begin(), coll.end());

/*print all elements without duplicates
* - source: coll
* — destination: standard output (with newline between elements)

*/
unique copy (coll.begin(), coll.end(), //source
ostream iterator<string> (cout, "\n"));
//destination

}

The program has only three statements that read all words from the standard input and print a
sorted list of them. Let's consider the three statements step-by-step. In the statement

copy (istream iterator<string>(cin),
istream iterator<string>(),
back inserter(coll));

two input stream iterators are used:

1. The expression

istream iterator<string>(cin)
creates a stream iterator that reads from the standard input stream cin . The template
argument string specifies that the stream iterator reads elements of this type (string
types are covered in Chapter 11). These elements are read with the usual input
operator >>. Thus, each time the algorithm wants to process the next element, the
istream iterator transforms that desire into a call of

dyne-book

100

The C++ Standard Library

11 In older systems you must use ptrdiff t as the second template parameter to create an
istream iterator (see Section 7.4.3).

cin >> string
The input operator for strings usually reads one word separated by whitespaces (see
page 492), so the algorithm reads word-by-word.

2. The expression

istream iterator<string>()
calls the default constructor of istream iterators that creates an end-of-stream iterator. It
represents a stream from which you can no longer read.

As usual, the copy () algorithm operates as long as the (incremented) first argument differs from
the second argument. The end-of-stream iterator is used as the end of the range, so the
algorithm reads all strings from cin until it can no longer read any more (due to end-of-stream or
an error). To summarize, the source of the algorithm is "all words read from cin." These words
are copied by inserting them into co11 with the help of a back inserter.

The sort () algorithm sorts all elements:

sort (coll.begin(), coll.end());

Lastly, the statement

unique copy (coll.begin(), coll.end(),
ostream iterator<string>(cout,"\n"));

copies all elements from the collection into the destination cout. During the process, the
unique copy () algorithm eliminates adjacent duplicate values. The expression

ostream iterator<string>(cout,"\n")

creates an output stream iterator that writes strings to cout by calling operator >> for each
element. The second argument behind cout serves as a separator between the elements. It is
optional. In this example, it is a newline, so every element is written on a separate line.

All components of the program are templates, so you can change the program easily to sort other
value types, such as integers or more complex objects. Section 7.4.3, explains more and gives
more examples about iostream iterators.

In this example, one declaration and three statements were used to sort all words from standard
input. However, you could do the same by using only one declaration and one statement. See
page 228 for an example.

5.5.3 Reverse lterators

The third kind of predefined iterator adapters are reverse iterators. Reverse iterators operate in
reverse. They switch the call of an increment operator internally into a call of the decrement
operator, and vice versa. All containers can create reverse iterators via their member functions
rbegin () and rend () . Consider the following example:

dyne-book 101

The C++ Standard Library

// stl/riterl.cpp

#include <iostream>
#include <vector>

#include <algorithm>
using namespace std;

int main ()
{

vector<int> coll;

//insert elements from 1 to 9

for (int i=1; i<=9; ++1i) {
coll.push back(i);

}

//print all element in reverse order
copy (coll.rbegin(), coll.rend(), //source

ostream iterator<int> (cout," ")); //destination
cout << endl;

The expression
coll.rbegin()

returns a reverse iterator for col1. This iterator may be used as the beginning of a reverse
iteration over the elements of the collection. Its position is the last element of the collection. Thus,
the expression

*coll.rbegin ()

returns the value of the last element.
Accordingly, the expression

coll.rend()

returns a reverse iterator for col1 that may be used as the end of a reverse iteration. As usual for
ranges, its position is past the end of the range, but from the opposite direction; that is, it is the
position before the first element in the collection.

The expression

*coll.rend()
is as undefined as is

*coll.end()

You should never use operator * (or operator ->) for a position that does not represent a valid
element.

The advantage of using reverse iterators is that all algorithms are able to operate in the opposite
direction without special code. A step to the next element with operator ++ is redefined into a step
backward with operator —-. For example, in this case, copy () iterates over the elements of
coll from the last to the first element. So, the output of the program is as follows:

dyne-book 102

The C++ Standard Library

987 654321

You can also switch "normal" iterators into reverse iterators, and vice versa. However, in doing so
the element of an iterator changes. This and other details about reverse iterators are covered in
Section 7.4.1.

5.6 Manipulating Algorithms

Several algorithms modify destination ranges. In particular, they may remove elements. If this
happens, special aspects apply. These aspects are explained in this section. They are surprising
and show the price of the STL concept that separates containers and algorithms with great

flexibility.

5.6.1 "Removing" Elements

The remove () algorithm removes elements from a range. However, if you use it for all elements
of a container it operates in a surprising way. Consider the following example:

// stl/removel.cpp

#include <iostream>
#include <list>

#include <algorithm>
using namespace std;

int main ()

{

list<int> coll;

//insert elements from 6 to 1 and 1 to 6
for (int i=1; 1i<=6; ++1) {

coll.push front (i);

coll.push back(i);
}

//print all elements of the collection
cout << "pre: ",
copy (coll.begin(), coll.end(),

ostream iterator<int> (cout," "));
cout << endl;

//remove all elements with value 3
remove (coll.begin() , coll.end(),
3);

//print all elements of the collection
cout << "post: ";
copy (coll.begin(), coll.end(),

ostream iterator<int> (cout," "));
cout << endl;

//source
//destination

//range
//value

//source
//destination

dyne-book

103

The C++ Standard Library

Someone reading this program without deeper knowledge would expect that all elements with
value 3 are removed from the collection. However, the output of the program is as follows:

pre: 65432112345 ¢6
post: 6 542 11245¢65¢6
Thus, remove () did not change the number of elements in the collection for which it was called.

The end () member function returns the old end, whereas size () returns the old number of
elements. However, something has changed: The elements changed their order as if the
elements were removed. Each element with value 3 was overwritten by the following elements
(Figure 5.7). At the end of the collection, the old elements that were not overwritten by the
algorithm remain unchanged. Logically, these elements no longer belong to the collection.

Figure 5.7. How remove () Operates

o
wn
£

However, the algorithm does return the new end. By using it, you can access the resulting range,
reduce the size of the collection, or process the number of removed elements. Consider the
following modified version of the example:

// stl/removeZ.cpp

#include <iostream>
#include <list>

#include <algorithm>
using namespace std;

int main ()

{
list<int> coll;

//insert elements from 6 to 1 and 1 to 6
for (int i=1; i<=6; ++1i) {

coll.push front (i);

coll.push back(i);
}

//print all elements of the collection
copy (coll.begin(), coll.end(),

ostream iterator<int>(cout,”™ "));
cout << endl;

//remove all elements with value 3

// - retain new end

list<int>::iterator end = remove (coll.begin(), coll.end(),
3);

//print resulting elements of the collection

dyne-book 104

The C++ Standard Library

copy (coll.begin(), end,
ostream iterator<int>(cout," "));
cout << endl;

//print number of resulting elements
cout << "number of removed elements:
<< distance(end,coll.end()) << endl;

//remove "removed'' elements
coll.erase (end, coll.end());

//print all elements of the modified collection
copy (coll.begin(), coll.end(),

ostream iterator<int>(cout,"™ "));
cout << endl;

In this version, the return value of remove () is assigned to the iterator end:

list<int>::iterator end = remove (coll.begin(), coll.end(),
3);

This is the new logical end of the modified collection after the elements are "removed." You can
use this return value as the new end for further operations:

copy (coll.begin(), end,
ostream iterator<int>(cout,"™ "));

Another possibility is to process the number of "removed" elements by processing the distance
between the "logical" and the real ends of the collection:

cout << "number of removed elements:
<< distance(end,coll.end()) << endl;

Here, a special auxiliary function for iterators, distance (), is used. It returns the distance
between two iterators. If the iterators were random access iterators you could process the
difference directly with operator -. However, the container is a list, so it provides only
bidirectional iterators. See Section 7.3.2, for details about distance () .1*%

1101 The definition of distance () has changed, so in older STL versions you must include the file
distance.hpp, which is mentioned on page 263.

If you really want to remove the "removed" elements, you must call an appropriate member
function of the container. To do this, containers provide the erase () member function, erase ()
removes all elements of the range that is specified by its arguments:

coll.erase (end, coll.end()):;

Here is the output of the whole program:

654321123456

dyne-book 105

The C++ Standard Library

6542112 456@6
number of removed elements: 2
6 542112456¢6

If you really want to remove elements in one statement, you can call the following statement:

coll.erase (remove (coll.begin(),coll.end(),
3),
coll.end());

Why don't algorithms call erase () by themselves? Well, this question highlights the price of the
flexibility of the STL. The STL separates data structures and algorithms by using iterators as the
interface. However, iterators are an abstraction to represent a position in a container. In general,
iterators do not know their containers. Thus, the algorithms, which use the iterators to access the
elements of the container, can't call any member function for it.

This design has important consequences because it allows algorithms to operate on ranges that
are different from "all elements of a container." For example, the range might be a subset of all
elements of a collection. And, it might even be a container that provides no erase () member
function (ordinary arrays are an example of such a container). So, to make algorithms as flexible
as possible, there are good reasons not to require that iterators know their container.

Note that it is often not necessary to remove the "removed" elements. Often, it is no problem to
use the returned new logical end instead of the real end of the container. In particular, you can
call all algorithms with the new logical end.

5.6.2 Manipulating Algorithms and Associative Containers

Manipulation algorithms (those that remove elements as well as those that reorder or modify
elements) have another problem when you try to use them with associative containers:
Associative containers can't be used as a destination. The reason for this is simple: If modifying
algorithms would work for associative containers, they could change the value or position of
elements so that they are not sorted anymore. This would break the general rule that elements in
associative containers are always sorted automatically according to their sorting criterion. So, not
to compromise the sorting, every iterator for an associative container is declared as an iterator for
a constant value (or key). Thus, manipulating elements of or in associative containers results in a
failure at compile time. !

11 ynfortunately, some systems provide really bad error handling. You see that something went wrong but
have problems finding out why. Some compilers don't even print the source code that caused the trouble.
This will change in the future, | hope.

Note that this problem prevents you from calling removing algorithms for associative containers
because these algorithms manipulate elements implicitly. The values of "removed" elements are
overwritten by the following elements that are not removed.

Now the question arises, How does one remove elements in associative containers? Well, the
answer is simple: Call their member functions! Every associative container provides member
functions to remove elements. For example, you can call the member function erase () to
remove elements:

// stl/remove3.cpp

dyne-book 106

The C++ Standard Library

#include <iostream>
#include <set>

#include <algorithm>
using namespace std;

int main ()

{

set<int> coll;

//insert elements from 1 to 9
for (int i=1; 1i<=9; ++1i) {
coll.insert (1) ;

}

//print all elements of the collection
copy (coll.begin(), coll.end(),

ostream iterator<int>(cout," "));
cout << endl;

/*Remove all elements with value 3

* - algorithm remove () does not work
* — instead member function erase() works
*/

int num = coll.erase(3);

//print number of removed elements
cout << "number of removed elements: " << num << endl;

//print all elements of the modified collection
copy (coll.begin(), coll.end(),

ostream iterator<int>(cout," "));
cout << endl;

Note that containers provide different erase () member functions. Only the form that gets the
value of the element(s) to remove as a single argument returns the number of removed elements.
Of course, when duplicates are not allowed, the return value can only be 0 or 1 (as is the case for
sets and maps).

The output of the program is as follows:

1234567829
number of removed elements: 1
12456789

5.6.3 Algorithms versus Member Functions

Even if you are able to use an algorithm, it might be a bad idea to do so. A container might have
member functions that provide much better performance.

Calling remove () for elements of a list is a good example of this. If you call remove () for
elements of a list, the algorithm doesn't know that it is operating on a list. Thus, it does what it
does for any container: It reorders the elements by changing their values. If, for example, it

dyne-book 107

The C++ Standard Library

removes the first element, all the following elements are assigned to their previous elements. This
behavior contradicts the main advantage of lists — the ability to insert, move, and remove
elements by modifying the links instead of the values.

To avoid bad performance, lists provide special member functions for all manipulating algorithms.
You should always use them. Furthermore, these member functions really remove "removed"
elements, as this example shows:

// stl/removed.cpp

#include <iostream>
#include <list>
#include <algorithm>
using namespace std;

int main ()

{
list<int> coll;

//insert elements from 6 to 1 and 1 to 6
for (int i=1; i<=6; ++1) {

coll.push front (i);

coll.push back(i);
}

//remove all elements with value 3
//- poor performance
coll.erase (remove (coll.begin(),coll.end(),
3),
coll.end());

//remove all elements with value 4
//—- good performance
coll.remove (4);

You should always prefer a member function over an algorithm if good performance is the goal.
The problem is, you have to know that a member function exists that has significantly better
performance for a certain container. No warning or error message appears if you use the
remove () algorithm for a list. However, if you prefer a member function in these cases you have
to change the code when you switch to another container type. In the reference sections of
algorithms (Chapter 9) | mention when a member function exists that provides better
performance than an algorithm.

5.7 User-Defined Generic Functions

The STL is an extensible framework. This means you can write your own functions and
algorithms to process elements of collections. Of course, these operations may also be generic.
However, to declare a valid iterator in these operations, you must use the type of the container,
which is different for each container type. To facilitate the writing of generic functions, each
container type provides some internal type definitions. Consider the following example:

// stl/print.hpp

dyne-book 108

The C++ Standard Library

#include <iostream>

/* PRINT ELEMENTS ()
* - prints optional C-string optcstr followed by
* - all elements of the collection coll
* - separated by spaces
*/
template <class T>
inline void PRINT ELEMENTS (const T& coll, const char* optcstr="")
{

typename T::const iterator pos;

std::cout << optcstr;
for (pos=coll.begin(); pos!=coll.end(); ++pos) {
std::cout << *pos << ' ';

}
std::cout << std::endl;

This example defines a generic function that prints an optional string followed by all elements of
the passed container. In the declaration

typename T::const iterator pos;

pos is declared as having the iterator type of the passed container type, t ypename is necessary
to specify that const iterator is a type and not a value of type T (see the introduction of
typename on page 11).

In addition to iterator and const iterator, containers provide other types to facilitate the
writing of generic functions. For example, they provide the type of the elements to enable the
handling of temporary copies of elements. See Section 7.5.1, for details.

The optional second argument of PRINT ELEMENTS is a string that is used as a prefix before all
elements are written. Thus, by using PRINT ELEMENTS () you could comment or introduce the
output like this:

PRINT ELEMENTS (coll, "all elements: ");

| introduced this function here because | use it often in the rest of the book to print all elements of
containers by using a simple call.

5.8 Functions as Algorithm Arguments

To increase their flexibility and power, several algorithms allow the passing of user-defined
auxiliary functions. These functions are called internally by the algorithms.

5.8.1 Examples of Using Functions as Algorithm Arguments

The simplest example is the for each () algorithm. It calls a user-defined function for each
element of the specified range. Consider the following example:

// stl/foreachl.cpp

dyne-book 109

The C++ Standard Library

#include <iostream>
#include <vector>

#include <algorithm>
using namespace std;

//function that prints the passed argument
void print (int elem)
{

cout << elem << ' ' ;

}

int main ()
{

vector<int> coll;

//insert elements from 1 to 9

for (int i=1; i<=9; ++1i) {
coll.push back(i);

}

//print all elements

for each (coll.begin(), coll.end(), //range
print); //operation

cout << endl;

The for each () algorithm calls the passed print () function for every element in the range

[coll.begin(),coll.end()). Thus, the output of the program is as follows:

123456789

Algorithms use auxiliary functions in several variants—some optional, some mandatory. In
particular, you can use them to specify a search criterion, a sorting criterion, or to define a

manipulation while transferring elements from one collection to another.
Here is another example program:
// stl/transforml.cpp

#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
#include "print.hpp"

int square (int value)
{

return value*value;

}

int main ()

{
std::set<int> colll;
std::vector<int> coll2;

dyne-book

110

The C++ Standard Library

//insert elements from 1 to 9 into colll
for (int i=1; 1<=9; ++1) {
colll.insert (i) ;

}
PRINT ELEMENTS (colll,"initialized: ");

//transform each element from colll to coll2
// - square transformed values

std::transform (colll.begin(),colll.end(), //source
std::back_inserter (coll2), //destination
square) ; //operation
PRINT ELEMENTS (collZ, "squared: ")

In this example, square () is used to square each element of col11 while it is transformed to
coll2 (Figure 5.8). The program has the following output:

Figure 5.8. How transform () Operates

transform()

int sgquare (int wvalue)

{

return value*value;

initialized:

23456789
squared: 4 91

6 25 36 49 64 81

5.8.2 Predicates

A special kind of auxiliary function for algorithms is a predicate. Predicates are functions that
return a Boolean value. They are often used to specify a sorting or a search criterion. Depending
on their purpose, predicates are unary or binary. Note that not every unary or binary function that
returns a Boolean value is a valid predicate. The STL requires that predicates always yield the
same result for the same value. This rules out functions that modify their internal state when they
are called. See Section 8.1.4, for details.

Unary Predicates

dyne-book 111

The C++ Standard Library

Unary predicates check a specific property of a single argument. A typical example is a function
that is used as a search criterion to find the first prime number;

// stl/primel.cpp

#include <iostream>

#include <list>

#include <algorithm>

#include <cstdlib> //for abs ()
using namespace std;

//predicate, which returns whether an integer 1is a prime number
bool isPrime (int number)

{

int

//ignore negative sign
number = abs (number) ;

// 0 and 1 are prime numbers
if (number == 0 || number == 1) {
return true;

}

//find divisor that divides without a remainder
int divisor;
for (divisor = number/2; number%divisor != 0; --divisor) {

}

//1if no divisor greater than 1 is found, it 1is a prime number

return divisor == 1;

main ()
list<int> coll;

//insert elements from 24 to 30

for (int i=24; i<=30; ++i) {
coll.push back(i);

}

//search for prime number
list<int>::iterator pos;

pos = find if (coll.begin(), coll.end(), //range
isPrime) ; //predicate
if (pos != coll.end()) {
//found
cout << *pos << " is first prime number found" << endl;
}
else {

//not found
cout << "no prime number found" << endl;

dyne-book

112

The C++ Standard Library

In this example, the find if () algorithm is used to search for the first element of the given
range for which the passed unary predicate yields true. Here, the predicate is the isPrime ()
function. This function checks whether a number is a prime number. By using it, the algorithm
returns the first prime number in the given range. If the algorithm does not find any element that
matches the predicate, it returns the end of the range (its second argument). This is checked after
the call. The collection in this example has a prime number between 24 and 30. So the output of
the program is as follows:

29 is first prime number found

Binary Predicates

Binary predicates typically compare a specific property of two arguments. For example, to sort
elements according to your own criterion you could provide it as a simple predicate function. This
might be necessary because the elements do not provide operator < or because you wish to use
a different criterion.

The following example sorts elements of a set by the first name and last name of a person:
// stl/sortl.cpp
#include <iostream>
#include <string>
#include <deque>
#include <algorithm>

using namespace std;

class Person {

public:
string firstname () const;
string lastname () const;

}i

/*binary function predicate:
*— returns whether a person is less than another person
*/
bool personSortCriterion (const Person& pl, const Personé& p2)
{
/*a person 1is less than another person
*-— 1f the last name is less
*-— if the last name is equal and the first name is less

*/
return pl.lastname ()<p2.lastname() ||
(!'(p2.lastname ()<pl.lastname()) &&
pl.firstname ()<p2.firstname());

}

int main ()
{

deque<Person> coll;

sort (coll. begin(), coll. end() , //range

dyne-book 113

The C++ Standard Library

personSortCriterion); //sort criterion

Note that you can also implement a sorting criterion as a function object. This kind of
implementation has the advantage that the criterion is a type, which you could use, for example,
to declare sets that use this criterion for sorting its elements. See Section 8.1.1, for such an
implementation of this sorting criterion.

5.9 Function Objects

Functional arguments for algorithms don't have to be functions. They can be objects that behave
as functions. Such an object is called a function object, or functor. Sometimes you can use a
function object when an ordinary function won't work. The STL often uses function objects and
provides several function objects that are very helpful.

5.9.1 What Are Function Objects?

Function objects are another example of the power of generic programming and the concept of
pure abstraction. You could say that anything that behaves like a function is a function. So, if you
define an object that behaves as a function, it can be used as a function.

So, what is the behavior of a function? The answer is: A functional behavior is something that you
can call by using parentheses and passing arguments. For example:

function (argl ,arg2); //a function call
So, if you want objects to behave this way you have to make it possible to "call" them by using
parentheses and passing arguments. Yes, that's possible (there are rarely things that are not

possible in C++). All you have to do is define operator () with the appropriate parameter
types:

class X {

public:
//define "function call" operator
return-value operator () (arguments) const;

}i

Now you can use objects of this class to behave as a function that you can call:

X fo;

fokargl, arg?) ; //call operator () for function object fo
The call is equivalent to:

fo.operator () (argl,arg2); //call operator () for function object fo

The following is a complete example. This is the function object version of a previous example
(see page 119) that did the same with an ordinary function:

// stl/foreach2.cpp

dyne-book 114

The C++ Standard Library

#include <iostream>
#include <vector>

#include <algorithm>
using namespace std;

//simple function object that prints the passed argument
class PrintInt {
public:
void operator () (int elem) const {
cout << elem << ' ';
}
bi

int main ()
{
vector<int> coll;

//insert elements from 1 to 9
for (int i=1; i<=9; ++1i) {
coll.push back(i);

}

//print all elements
for each (coll.begin(), coll.end(), //range

PrintInt()); //operation
cout << endl;

The class PrintInt defines objects for which you can call operator () with an int argument.
The expression

PrintInt ()

in the statement

for each (coll.begin(), coll.end(),
PrintInt());

creates a temporary object of this class, which is passed to the for each () algorithm as an
argument. The for each () algorithm is written like this:

namespace std {
template <class Iterator, class Operation>
Operation for each (Iterator act, Iterator end, Operation op)

{

while (act !'= end) { //as long as not reached the end
op (*act); // - call op() for actual element
act++; // — move literator to the next element

}

return op; }

dyne-book 115

The C++ Standard Library

for each () uses the temporary function object op to call op (*act) for each element act. If
the third parameter is an ordinary function, it simply calls it with *act as an argument. If the third
parameter is a function object, it calls operator () for the function object op with *act as an
argument. Thus, in this example program for each () calls:

PrintInt::operator () (*act)

You may be wondering what all this is good for. You might even think that function objects look
strange, nasty, or nonsensical. It is true that they do complicate code. However, function objects
are more than functions, and they have some advantages:

1. Function objects are "smart functions."

Objects that behave like pointers are smart pointers. This is similarly true for objects that
behave like functions: They can be "smart functions" because they may have abilities
beyond operator () . Function objects may have other member functions and attributes.
This means that function objects have a state. In fact, the same function, represented by
a function object, may have different states at the same time. This is not possible for
ordinary functions. Another advantage of function objects is that you can initialize them at
runtime before you use/call them.

2. Each function object has its own type.

Ordinary functions have different types only when their signatures differ. However,
function objects can have different types even when their signatures are the same. In
fact, each functional behavior defined by a function object has its own type. This is a
significant improvement for generic programming using templates because you can pass
functional behavior as a template parameter. It enables containers of different types to
use the same kind of function object as a sorting criterion. This ensures that you don't
assign, combine, or compare collections that have different sorting criteria. You can even
design hierarchies of function objects so that you can, for example, have different, special
kinds of one general criterion.

3. Function objects are usually faster than ordinary functions.

The concept of templates usually allows better optimization because more details are
defined at compile time. Thus, passing function objects instead of ordinary functions often
results in better performance.

In the rest of this subsection | present some examples that demonstrate how function objects can
be "smarter" than ordinary functions. Chapter 8, which deals only with function objects, provides
more examples and details. In particular, it shows how to benefit from the ability to pass
functional behavior as a template parameter.

Suppose you want to add a certain value to all elements of a collection. If you know the value you
want to add at compile time, you could use an ordinary function:

void addl0 (int& elem)
{

elem += 10;

}

dyne-book 116

The C++ Standard Library

void £f1()
{

vector<int> coll;

for each (coll.begin(), coll.end(), //range
addlo) ; //operation

If you need different values that are known at compile time, you could use a template instead:

template <int theValue>
void add (inté& elem)
{

elem += theValue;

}

void £f1()
{

vector<int> coll;

for each (coll.begin() , coll.end(), //range
add<10>) ; //operation

If you process the value to add at runtime, things get complicated. You must pass the value to the
function before the function is called. This normally results in some global variable that is used
both by the function that calls the algorithm and by the function that is called by the algorithm to
add that value. This is messy style.

If you need such a function twice, with two different values to add, and both values are processed
at runtime, you can't achieve this with one ordinary function. You must either pass a tag or you
must write two different functions. Did you ever copy the definition of a function because it had a
static variable to keep its state and you needed the same function with another state at the same
time? This is exactly the same type of problem.

With function objects, you can write a "smarter" function that behaves in the desired way.
Because the object may have a state, it can be initialized by the correct value. Here is a complete
example 14 ;

12 The auxiliary function PRINT ELEMENTS () was introduced on page 118.

// stl/addl.cpp

#include <iostream>
#include <list>

#include <algorithm>
#include "print.hpp"
using namespace std;

//function object that adds the value with which it is initialized
class Addvalue {

dyne-book 117

The C++ Standard Library

private:
int the Value; //the value to add
public:
//constructor initializes the value to add
AddValue (int v) : theValue(v) {

}

//the "function call" for the element adds the value
void operator () (int& elem) const {
elem += theValue;
}
bi

int main ()

{
list<int> coll;

The first call of for each () adds 10 to each value:

for each (coll.begin(), coll.end(), //range
Addvalue (10)) ; //operation

Here, the expression Addvalue (10) creates an object of type Addvalue that is initialized with
the value 10. The constructor of AddValue stores this value as the member thevalue. Inside
for each(), "()"is called for each element of col1l. Again, this is a call of operator () for
the passed temporary function object of type Addvalue. The actual element is passed as an
argument. The function object adds its value 10 to each element. The elements then have the
following values:

after adding 10: 11 12 13 14 15 16 17 18 19

The second call of for each () uses the same functionality to add the value of the first element
to each element. It initializes a temporary function object of type Addvalue with the first element
of the collection:

AddvValue (*coll. begin())

The output is then as follows:

after adding first element: 22 23 24 25 26 27 28 29 30

See page 335 for a modified version of this example, in which the Addvalue function object type
is a template for the type of value to add.

By using this technique, two different function objects can solve the problem of having a function
with two states at the same time. For example, you could simply declare two function objects and
use them independently:

AddValue addx (x); //function object that adds value x
AddValue addy (y):; //function object that adds value y

dyne-book 118

The C++ Standard Library

for each (coll.begin(),coll.end(), //add value x to each element
addx) ;

for each (coll.begin(),coll.end(), //add value y to each element
addy) ;

for each (coll.begin() .coll.end(), //add value x to each element
addx) ;

Similarly you can provide additional member functions to query or to change the state of the
function object during its lifetime. See page 300 for a good example.

Note that for some algorithms the C++ standard library does not specify how often function
objects are called for each element, and it might happen that different copies of the function

object are passed to the elements. This might have some nasty consequences if you use function
objects as predicates. Section 8.1.4, covers this issue.

5.9.2 Predefined Function Objects

The C++ standard library contains several predefined function objects that cover fundamental
operations. By using them, you don't have to write your own function objects in several cases. A
typical example is a function object used as a sorting criterion. The default sorting criterion for
operator < is the predefined sorting criterion 1ess<>. Thus, if you declare

set<int> coll;

it is expanded to [*3

[13] For systems that don't provide default template arguments, you usually must use the latter form.

set<int, less<int> > coll; //sort elements with <

From there, it is easy to sort elements in the opposite order 4 ;

[14] Note that you have to put a space between the two ">" characters. ">>" would be parsed as shift
operator, which would result in a syntax error.

set<int ,greater<int> > coll; //sort elements with >

Similarly, many function objects are provided to specify numeric processing. For example, the
following statement negates all elements of a collection:

transform (coll.begin() , coll.end(), //source
coll.begin(), //destination
negate<int>()) ; //operation

The expression

dyne-book 119

The C++ Standard Library

negate<int> ()

creates a function object of the predefined template class negate that simply returns the negated
element of type int for which it is called. The transform() algorithm uses that operation to
transform all elements of the first collection into the second collection. If source and destination
are equal (as in this case), the returned negated elements overwrite themselves. Thus, the
statement negates each element in the collection.

Similarly, you can process the square of all elements in a collection:

//process the square of all elements

transform (coll.begin(), coll.end(), //first source
coll.begin(), //second source
coll.begin(), //destination
multiplies<int>()) ; //operation

Here, another form of the transform () algorithm combines elements of two collections by using
the specified operation, and writes the resulting elements into the third collection. Again, all
collections are the same, so each element gets multiplied by itself, and the result overwrites the
old value. **

(151 In earlier versions of the STL, the function object for multiplication had the name times. This was
changed due to a name clash with a function of operating system standards (X/Open, POSIX) and because
multiplies was clearer.

By using special function adapters you can combine predefined function objects with other values
or use special cases. Here is a complete example:

// stl/fol.cpp

#include <iostream>
#include <set>
#include <deque>
#include <algorithm>
#include "print.hpp"
using namespace std;

int main ()

{
set<int,greater<int> > colll;
deque<int> coll2;

//insert elements from 1 to 9

for (int i=1; i<=9; ++1i) {
colll.insert (i) ;

}

PRINT.ELEMENTS (colll,"initialized: ");

//transform all elements into coll2 by multiplying 10

transform (colll .begin(), colll .end(), //source
back inserter(coll2), //destination
bind2nd (multiplies<int>() ,10)); //operation

dyne-book 120

The C++ Standard Library

PRINT ELEMENTS (coll2,"transformed: ");

//replace value equal to 70 with 42

replace if (coll2.begin(),coll2.end(), //range
bind2nd(equal to<int>() ,70) , //replace criterion
42) ; //new value

PRINT ELEMENTS (coll2, "replaced: ");

//remove all elements with values less than 50

coll2.erase(remove if(coll2.begin(),coll2.end(), //range
bind2nd (less<int>() ,50)), //remove criterion
coll2.end());

PRINT ELEMENTS (coll2, "removed: ")

With the statement

transform (colll.begin() ,colll.end() //source
back inserter (coll2) , //destination
bind2nd (multiplies<int>() ,10)) ; //operation

all elements of col111 are transformed into col12 (inserting) while multiplying each element by
10. Here, the function adapter bind2nd causes multiply<int> to be called for each element
of the source collection as the first argument and the value 10 as the second.

The way bind2nd operates is as follows: transform () is expecting as its fourth argument an
operation that takes one argument; namely, the actual element. However, we would like to
multiply that argument by ten. So, we have to combine an operation that takes two arguments
and the value that always should be used as a second argument to get an operation for one
argument. bind2nd does that job. It stores the operation and the second argument as internal
values. When the algorithm calls bind2nd with the actual element as the argument, bind2nd
calls its operation with the element from the algorithm as the first argument and the internal value
as the second argument, and returns the result of the operation.

Similarly, in
replace if (coll2.begin(),coll2.end(), //range
bind2nd(equal to<int>(),70), //replace criterion
42) ;

the expression

bind2nd(equal to<int>(),70)

is used as a criterion to specify the elements that are replaced by 42. bind2nd calls the binary
predicate equal to with value 70 as the second argument, thus defining a unary predicate for
the elements of the processed collection.

The last statement is similar because the expression

bind2nd (less<int> (), 50)

dyne-book 121

The C++ Standard Library

is used to specify the element that should be removed from the collection. It specifies that all
elements that are less than value 50 be removed. The output of the program is as follows:

initialized: 9 8 7 6 54 3 2 1
transformed: 90 80 70 60 50 40 30 20 10
replaced: 90 80 42 60 50 40 30 20 10
removed: 90 80 60 50

This kind of programming results in functional composition. What is interesting is that all these
function objects are usually declared inline. Thus, you use a function-like notation or abstraction,
but you get good performance.

There are other kinds of function objects. For example, some function objects provide the ability
to call a member function for each element of a collection:

for each (coll.begin(), coll.end(), //range
mem fun ref (&Person: : save)); //operation

The function object mem fun ref calls a specified member function for the element for which it
is called. Thus, for each element of the collection col11l, the member function save () of class
Person is called. Of course, this works only if the elements have type Person or a type derived
from Person.

Section 8.2, lists and discusses in more detail all predefined function objects, function adapters,
and aspects of functional composition. It also explains how you can write your own function
objects.

5.10 Container Elements

Elements of containers must meet certain requirements because containers handle them in a
special way. In this section | describe these requirements. | also discuss the consequences of the
fact that containers make copies of their elements internally.

5.10.1 Requirements for Container Elements

Containers, iterators, and algorithms of the STL are templates. Thus, they can process any type,
whether predefined or user defined. However, because of the operations that are called, some
requirements apply. The elements of STL containers must meet the following three fundamental
requirements:

1. An element must be copyable by a copy constructor. The generated copy should be
equivalent to the source. This means that any test for equality returns that both are equal
and that both source and copy behave the same.

All containers create internal copies of their elements and return temporary copies of
them, so the copy constructor is called very often. Thus, the copy constructor should
perform well (this is not a requirement, but a hint to get better performance). If copying
objects takes too much time you can avoid copying objects by using the containers with
reference semantics. See Section 6.8, for details.

dyne-book 122

The C++ Standard Library

2. An element must be assignable by the assignment operator. Containers and algorithms
use assignment operators to overwrite old elements with new elements.

3. An element must be destroyable by a destructor. Containers destroy their internal copies
of elements when these elements are removed from the container. Thus, the destructor
must not be private. Also, as usual in C++, a destructor must not throw; otherwise, all
bets are off.

These three operations are generated implicitly for any class. Thus, a class meets the
requirements automatically, provided no special versions of these operations are defined and no
special members disable the sanity of those operations.

Elements might also have to meet the following requirements 61 :

[16] |n some older C++ systems, you may have to implement these additional requirements even if they are
not used. For example, some implementations of vector always require the default constructor for
elements. Other implementations always require the existence of the comparison operator. However,
according to the standard, such a requirement is wrong, and these limitations will likely be eliminated.

e For some member functions of sequence containers, the default constructor must be
available. For example, it is possible to create a nonempty container or increase the
number of elements with no hint of the values those new elements should have. These
elements are created without any arguments by calling the default constructor of their
type.

e For several operations, the test of equality with operator == must be defined. It is
especially needed when elements are searched.

e For associative containers the operations of the sorting criterion must be provided by the
elements. By default, this is the operator <, which is called by the less<> function
object.

5.10.2 Value Semantics or Reference Semantics

All containers create internal copies of their elements and return copies of those elements. This
means that container elements are equal but not identical to the objects you put into the
container. If you modify objects as elements of the container, you modify a copy, not the original
object.

Copying values means that the STL containers provide value semantics. They contain the values
of the objects you insert rather than the objects themselves. In practice, however, you also need
reference semantics. This means that the containers contain references to the objects that are
their elements.

The approach of the STL, only to support value semantics, has strengths and weaknesses. lts
strengths are:

e Copying elements is simple.
e References are error prone. You must ensure that references don't refer to objects that
no longer exist. You also have to manage circular references, which might occur.

Its weaknesses are:

e Copying elements might result in bad performance or may not even be possible.
e Managing the same object in several containers at the same time is not possible.

dyne-book 123

The C++ Standard Library

In practice you need both approaches; you need copies that are independent of the original data
(value semantics) and copies that still refer to the original data and get modified accordingly
(reference semnatics). Unfortunately, there is no support for reference semantics in the C++
standard library. However, you can implement reference semantics in terms of value semantics.

The obvious approach to implementing reference semantics is to use pointers as elements. [*7]
However, ordinary pointers have the usual problems. For example, objects to which they refer
may no longer exist, and comparisons may not work as desired because pointers instead of the
objects are compared. Thus, you should be very careful when you use ordinary pointers as
container elements.

e programmers might recognize the use of pointers to get reference semantics. In C, function arguments
are able to get passed only by value, so you need pointers to enable a call-by-reference.

A better approach is to use a kind of smart pointer — objects that have a pointer-like interface but
that do some additional checking or processing internally. The important question here is, how
smart do they have to be? The C++ standard library does provide a smart pointer class that might
look like it would be useful here: auto ptr (see Section 4.2). However, you can't use
auto ptrs because they don't meet a fundamental requirement for container elements. That is,
after a copy or an assignment of an auto ptr is made, source and destination are not
equivalent. In fact, the source auto ptr gets modified because its value gets transferred and
not copied(see page 43 and page 47). In practice, this means that sorting or even printing the
elements of a container might destroy them. So, do not use auto.ptrs as container elements (if
you have a standard-conforming C++ system, you will get an error at compile time if you try to
use an auto_ptr as a container element). See page 43 for details.

To get reference semantics for STL containers you must write your own smart pointer class. But
be aware: Even if you use a smart pointer with reference counting (a smart pointer that destroys
its value automatically when the last reference to it gets destroyed), it is troublesome. For
example, if you have direct access to the elements, you can modify their values while they are in
the container. Thus, you could break the order of elements in an associative container. You don't
want to do this.

Section 6.8, offers more details about containers with reference semantics. In particular, it
shows a possible way to implement reference semantics for STL containers by using smart
pointers with reference counting.

5.11 Errors and Exceptions Inside the STL

Errors happen. They might be logical errors caused by the program (the programmer) or runtime
errors caused by the context or the environment of a program (such as low memory). Both kinds
of errors may be handled by exceptions (see page 15 for a short introduction to exceptions). This
section discusses how errors and exceptions are handled in the STL.

5.11.1 Error Handling

The design goal of the STL was the best performance rather than the most security. Error
checking wastes time, so almost none is done. This is fine if you can program without making any
errors, but it can be a catastrophe if you can't. Before the STL was adopted into the C++ standard
library, discussions were held regarding whether to introduce more error checking. The majority
decided not to, for two reasons:

1. Error checking reduces performance, and speed is still a general goal of programs. As
mentioned, good performance was one of the design goals of the STL.

dyne-book 124

The C++ Standard Library

If you prefer safety over speed, you can still get it, either by adding wrappers or by using
special versions of the STL. But you can't program to avoid error checking to get better
performance when error checking is built into all basic operations. For example, when
every subscript operation checks whether a range is valid, you can't write your own
subscripts without checking. However, it is possible the other way around.

As a consequence, error checking is possible but not required inside the STL.

The C++ standard library states that any use of the STL that violates preconditions results in
undefined behavior. Thus, if indexes, iterators, or ranges are not valid, the result is undefined. If
you do not use a safe version of the STL, undefined memory access typically results, which
causes some nasty side effects or even a crash. In this sense, the STL is as error prone as
pointers are in C.

Finding such errors could be very hard, especially without a safe version of the STL.

In particular, the use of the STL requires that the following be met:

Iterators must be valid. For example, they must be initialized before they are used. Note
that iterators may become invalid as a side effect of other operations. In particular, they
become invalid for vectors and deques if elements are inserted or deleted, or reallocation
takes place.
Iterators that refer to the past-the-end position have no element to which to refer. Thus,
calling operator * or operator —> is not allowed. This is especially true for the return
values of the end () and rend () container member functions.
Ranges must be valid:

o Both iterators that specify a range must refer to the same container.

o The second iterator must be reachable from the first iterator.
If more than one source range is used, the second and later ranges must have at least as
many elements as the first one.
Destination ranges must have enough elements that can be overwritten; otherwise, insert
iterators must be used.

The following example shows some possible errors:

// stl/iterbugl.cpp

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int main ()

{

vector<int> colll; //empty collection
vector<int> coll2; //empty collection

/* RUNTIME ERROR:
* - beginning is behind the end of the range
*/
vector<int>::iterator pos = colll.begin();
reverse (++pos, colll .end());

//insert elements from 1 to 9 into coll2
for (int i=1; i<=9; ++1i) {
coll2.push back (i);

dyne-book 125

The C++ Standard Library

}

/*RUNTIME ERROR:

* — overwriting nonexisting elements
*/
copy (coll2.begin(), coll2.end(), //source
colll .begin()) ; //destination

/* RUNTIME ERROR:

* — collections mistaken
* - begin () and end() mistaken
*/
copy (colll.begin(), coll2.end(), //source
colll. end()); //destination

Note that these errors occur at runtime, not at compile time, and thus they cause undefined
behavior.

There are many ways to make mistakes when using the STL, and the STL is not required to
protect you from yourself. Thus, it is a good idea to use a "safe" STL, at least during software
development. A first version of a safe STL was introduced by Cay Horstmann. 8] Unfortunately,
most library vendors provide the STL based on the original source code, which doesn't include
error handling. But things get better. An exemplary version of the STL is the "STLport," which is
available for free for almost any platform at www.stlport.org/.

[18] You can find the safe STL by Cay Horstmann at www.horstmann.com/safestl.html.

5.11.2 Exception Handling

The STL almost never checks for logical errors. Therefore, almost no exceptions are generated
by the STL itself due to a logical problem. In fact, there is only one function call for which the
standard requires that it might cause an exception directly: the at () member function for vectors
and deques. (It is the checked version of the subscript operator.) Other than that, the standard
requires that only the usual standard exceptions may occur, such as bad alloc for lack of
memory or exceptions of user-defined operations.

When are exceptions generated and what happens to STL components when they are? For a
long time during the standardization process there was no defined behavior regarding this. In fact,
every exception resulted in undefined behavior. Even the destruction of an STL container after an
exception was thrown during one of its operations resulted in undefined behavior, such as a
crash. Thus, the STL was useless when you needed guaranteed, defined behavior because it
was not even possible to unwind the stack.

How to handle exceptions was one of the last topics addressed during the standardization
process. Finding a good solution was not easy, and it took a long time for the following reasons:

1. It was very difficult to determine the degree of safety the C++ standard library should
provide. You might argue that it is always best to provide as much safety as possible. For
example, you could say that the insertion of a new element at any position in a vector
ought to either succeed or have no effect. Ordinarily an exception might occur while
copying later elements into the next position to make room for the new element, from
which a full recovery is impossible. To achieve the stated goal, the insert operation would
need to be implemented to copy every element of the vector into new storage, which

dyne-book 126

The C++ Standard Library

would have a serious impact on performance. If good performance is a design goal (as is
the case for the STL), you can't provide perfect exception handling in all cases. You have
to find a compromise that meets both needs.

2. There was a concern that the presence of code to handle exceptions could adversely
affect performance. This would contradict the design goal of achieving the best possible
performance. However, compiler writers state that, in principle, exception handling can be
implemented without any significant performance overhead (and many such
implementations exist). There is no doubt that it is better to have guaranteed, defined
behavior for exceptions without a significant performance penalty instead of the risk that
exceptions might crash your system.

As a result of these discussions, the C++ standard library now gives the following basic
guarantee for exception safety **! : The C++ standard library will not leak resources or violate
container invariants in the face of exceptions.

[19] Many thanks to Dave Abrahams and Greg Colvin for their work on exception safety in the C++ standard
library and for the feedback they gave me regarding this topic.

Unfortunately, for many purposes this is not enough. Often you need a stronger guarantee that
specifies that an operation has no effect if an exception is thrown. Such operations can be
considered to be atomic with respect to exceptions. Or, to use terms from database
programming, you could say that these operations support commit-or-rollback behavior or are
transaction safe.

Regarding this stronger guarantee, the C++ standard library now guarantees the following:

e For all node-based containers (lists, sets, multisets, maps and multimaps), any failure to
construct a node simply leaves the container as it was. Furthermore, removing a node
can't fail (provided destructors don't throw). However, for multiple-element insert
operations of associative containers, the need to keep elements sorted makes full
recovery from throws impractical. Thus, all single-element insert operations of associative
containers support commit-or-rollback behavior. That is, they either succeed or have no
effect. In addition, it is guaranteed that all erase operations for both single- and multiple-
elements always succeed.

For lists, even multiple-element insert operations are transaction-safe. In fact, all list
operations, except remove () , remove 1if (), merge(), sort(), and unique(),
either succeed or have no effect. For some of them the C++ standard library provides
conditional guarantees. Thus, if you need a transaction-safe container, you should use a
list.

e All array-based containers (vectors and deques) do not fully recover when an element
gets inserted. To do this, they would have to copy all subsequent elements before any
insert operation, and handling full recovery for all copy operations would take quite a lot
of time. However, push and pop operations that operate at the end do not require that
existing elements have to get copied. So if they throw, it is guaranteed that they have no
effect. Furthermore, if elements have a type with copy operations (copy constructor and
assignment operator) that do not throw, then every container operation for these
elements either succeeds or has no effect.

See Section 6.10.10, for a detailled overview of all container operations that give stronger
guarantees in face of exceptions.

dyne-book 127

The C++ Standard Library

Note that all these guarantees are based on the requirement that destructors never throw (which
should always be the case in C++). The C++ standard library makes this promise, and so must
the application programmer.

If you need a container that has a full commit-or-rollback ability, you should use either a list
(without calling the sort () and unigque () member functions) or an associative container
(without calling their multiple-element insert operations). This avoids having to make copies
before a modifying operation to ensure that no data gets lost. Note that making copies of a
container could be very expensive.

If you can't use a node-based container and need the full commit-or-rollback ability, you have to
provide wrappers for each critical operation. For example, the following function would almost
safely insert a value in any container at a certain position:

template <class T, class Cont, class Iter>
void insert (const Conté& coll, Iter pos, const T& value)

{

Cont tmp(coll); //copy container and all elements
tmp. insert (pos, value); //modify the copy
coll. swap (tmp); //use copy (in case no exception was thrown)

Note that | wrote "almost," because this function still is not perfect. This is because the swap ()
operation throws when, for associative containers, copying the comparison criterion throws. You
see, handling exceptions perfectly is not easy.

5.12 Extending the STL

The STL is designed as a framework that may be extended in almost any direction. You can
supply your own containers, iterators, algorithms, or function objects, provided they meet certain
requirements. In fact, there are some useful extensions that are missing in the C++ standard
library. This happened because at some point the committee had to stop introducing new features
and concentrate on perfecting the existing parts; otherwise, the job would never have been
completed.

The most important component that is missing in the STL is an additional kind of container that is
implemented as a hash table. The proposal of having hash tables be part of the C++ standard
library simply came too late. However, newer versions of the standard will likely contain some
form of hash tables. Most implementations of the C++ library already provide hash containers, but
unfortunately they're all different. See Section 6.7.3, for more details.

Other useful extensions are some additional function objects (see Section 8.3), iterators (see
Section 7.5.2), containers (see Section 6.7), and algorithms (see Section 7.5.1).

dyne-book 128

The C++ Standard Library

Chapter 6. STL Containers

This chapter discusses STL containers in detail. It continues the discussion that was begun in
Chapter 5. The chapter starts with a general overview of the general abilities and operations of
all container classes, with each container class explained in detail. The explanation includes a
description of their internal data structures, their operations, and their performance. It also shows
how to use the different operations and gives examples if the usage is not trivial. Each section
about the containers ends with examples of the typical use of the container. The chapter then
discusses the interesting question of when to use which container. By comparing the general
abilities, advantages, and disadvantages of all container types, it shows you how to find the best
container to meet your needs. Lastly, the chapter covers all members of all container classes in
detail. This part is intended as a type of reference manual. You can find the minor details of the
container interface and the exact signature of the container operations. When useful,
crossreferences to similar or supplementary algorithms are included.

The C++ standard library provides some special container classes, the so-called container
adapters (stack, queue, priority queue), bitmaps, and valarrays. All of these have special
interfaces that don't meet the general requirements of STL containers, so they are covered in
separate sections.!*! Container adapters and bitsets are covered in Chapter 10. Valarrays are
described in Section 12.2

t Historically, container adapters are part of the STL. However, from a conceptional perspective, they are
not part of the STL framework; they "only" use the STL.

6.1 Common Container Abilities and Operations

6.1.1 Common Container Abilities

This section covers the common abilities of STL container classes. Most of them are
requirements that, in general, every STL container should meet. The three core abilities are as
follows:

1. All containers provide value rather than reference semantics. Containers copy elements
internally when they are inserted rather than managing references to it. Thus, each
element of an STL container must be able to be copied. If objects you want to store don't
have a public copy constructor, or copying is not useful (for example, because it takes
time or elements must be part of multiple containers), the container elements must be
pointers or pointer objects that refer to these objects. Section 5.10.2, covers this
problem in detail.

2. In general, all elements have an order. Thus, you can iterate one or many times over all
elements in the same order. Each container type provides operations that return iterators
to iterate over the elements. This is the key interface of the STL algorithms.

3. In general, operations are not safe. The caller must ensure that the parameters of the
operations meet the requirements. Violating these requirements (such as using an invalid
index) results in undefined behavior. Usually the STL does not throw exceptions by itself.
If user-defined operations called by the STL containers do throw, the behavior is different.
See Section 5.11.2, for details.

6.1.2 Common Container Operations

dyne-book 129

The C++ Standard Library

The operations common to all containers meet the core abilities that were mentioned in the
previous subsection. Table 6.1 lists these operations. The following subsections explore some of
these common operations.

Initialization

Every container class provides a default constructor, a copy constructor, and a destructor. You
can also initialize a container with elements of a given range. This constructor is provided to
initialize the container with elements of another container, with an array, or from standard input.
These constructors are member templates (see page 11), so not only the container but also the
type of the elements may differ, provided there is an automatic conversion from the source
element type to the destination element type.? The following examples expand on this:

Llifa system does not provide member templates, it will typically allow only the same types. In this case,
you can use the copy () algorithm instead. See page 188 for an example.

Table 6.1. Common Operations of Container Classes

Operation Effect

ContType ¢ Creates an empty container without any element

ContType c1 (c2) Copies a container of the same type

ContType c (beg, end) |Creates a container and initializes it with copies of all elements of
[beg, end)

c. ContType () Deletes all elements and frees the memory

c.size() Returns the actual number of elements

c.empty () Returns whether the container is empty (equivalent to size () ==0, but
might be faster)

c.max_size () Returns the maximum number of elements possible

cl == Returns whether c1 is equal to c2

cl !=c2 Returns whether c1 is not equal to c2 (equivalentto ! (c1==c2))

cl < c2 Returns whether c1 is less than c2

cl > c2 Returns whether c1 is greater than c2 (equivalent to c2<c1

cl <= c2 Returns whether c1 is less than or equal to c2 (equivalent to
! (c2<cl))

cl >= c2 Returns whether c1is greater than or equal to c2 (equivalent to
I (cl<c2))

cl = c2 Assigns all elements of c1 to c2

cl.swap(c2) Swaps the data of cland c2

swap (cl,c2) Same (as global function)

c.begin () Returns an iterator for the first element

c.end () Returns an iterator for the position after the last element

c.rbegin () Returns a reverse iterator for the first element of a reverse iteration

c.rend() Returns a reverse iterator for the position after the last element of a

reverse iteration
c.insert (pos, elem) Inserts a copy of elem (return value and the meaning of pos differ)

c.erase (beg,end) |Removes all elements of the range [beg, end) (some containers return
next element not removed)

c.clear () Removes all elements (makes the container empty)

dyne-book 130

The C++ Standard Library

c.get_allocator () |Returns the memory model of the container

e Initialize with the elements of another container:
std::list<int> 1; //1 is a linked list of ints

//copy all elements of the list as floats into a vector
std::vector<float> c(l.begin(),l.end());

¢ Initialize with the elements of an array:
int arrayl] = { 2, 3, 17, 33, 45, 77 };

//copy all elements of the array into a set
std::set<int> c(array,array+sizeof (array)/sizeof (array[0]));

e Initialize by using standard input:

//read all integer elements of the deque from standard input
std::deque<int> c((std::istream iterator<int>(std::cin)),
(std::istream iterator<int>()));
Don't forget the extra parentheses around the initializer arguments here. Otherwise, this
expression does something very different and you probably will get some strange
warnings or errors in following statements. Consider writing the statement without extra
parentheses:

std: :deque<int> c(std::istream iterator<int>(std::cin),
std::istream:iterator<int>());
In this case, c declares a function with a return type that is deque<int>. Its first
parameter is of type istream iterator<int> with the name cin, and its second
unnamed parameter is of type "function taking no arguments returning
istream iterator<int>." This construct is valid syntactically as either a declaration
or an expression. So, according to language rules, it is treated as a declaration. The extra
parentheses force the initializer not to match the syntax of a declaration.t

131 Thanks to John H. Spicer from EDG for this explanation.

In principle, these techniques are also provided to assign or to insert elements from another
range. However, for those operations the exact interfaces either differ due to additional
arguments or are not provided for all container classes.

Size Operations
For all container classes, three size operations are provided:
1. size()
Returns the actual number of elements of the container.

2. empty()

dyne-book 131

The C++ Standard Library

Is a shortcut for checking whether the number of elements is zero (size ()==0).
However, empty () might be implemented more efficiently, so you should use it if
possible.

3. max_size()

Returns the maximum number of elements a container might contain. This value is
implementation defined. For example, a vector typically contains all elements in a single
block of memory, so there might be relevant restrictions on PCs. Otherwise,
max_size () is usually the maximum value of the type of the index.

Comparisons

The usual comparison operators ==, ! =, <, <=, >, and >= are defined according to the
following three rules:

1. Both containers must have the same type.

2. Two containers are equal if their elements are equal and have the same order. To check
equality of elements, use operator ==.

3. To check whether a container is less than another container, a lexicographical
comparison is done(see page 360).

To compare containers with different types, you must use the comparing algorithms of Section
9.5.4.

Assignments and swap ()

If you assign containers, you copy all elements of the source container and remove all old
elements in the destination container. Thus, assignment of containers is relatively expensive.

If the containers have the same type and the source is no longer used, there is an easy
optimization: Use swap () . swap () offers much better efficiency because it swaps only the
internal data of the containers. In fact, it swaps only some internal pointers that refer to the data
(elements, allocator, sorting criterion, if any). So, swap () is guaranteed to have only constant
complexity, instead of the linear complexity of an assignment.

6.2 Vectors

A vector models a dynamic array. Thus, it is an abstraction that manages its elements with a
dynamic array (Figure 6.1). However, note that the standard does not specify that the
implementation use a dynamic array. Rather, it follows from the constraints and specification of
the complexity of its operation.

Figure 6.1. Structure of a Vector

I 1 T T T 1 . _. .
. I 'j

To use a vector, you must include the header file <vector>H:

dyne-book 132

The C++ Standard Library

141 |n the original STL, the header file for vectors was <vector.h>.
#include <vector>

There, the type is defined as a template class inside namespace std:

namespace std {
template <class T,
class Allocator = allocator<T> >
class vector;

The elements of a vector may have any type T that is assignable and copyable. The optional
second template parameter defines the memory model (see Chapter 15). The default memory
model is the model allocator, which is provided by the C++ standard library.[

151 In systems without support for default template parameters, the second argument is typically missing.

6.2.1 Abilities of Vectors

Vectors copy their elements into their internal dynamic array. The elements always have a certain
order. Thus, vectors are a kind of ordered collection. Vectors provide random access. Thus, you
can access every element directly in constant time, provided you know its position. The iterators
are random access iterators, so you can use any algorithm of the STL.

Vectors provide good performance if you append or delete elements at the end. If you insert or
delete in the middle or at the beginning, performance gets worse. This is because every element
behind has to be moved to another position. In fact, the assignment operator would be called for
every following element.

Size and Capacity

Part of the way in which vectors give good performance is by allocating more memory than they
need to contain all their elements. To use vectors effectively and correctly you should understand
how size and capacity cooperate in a vector.

Vectors provide the usual size operations size (), empty (), and max size() (see Section
6.1.2). An additional "size" operation is the capacity () function. capacity () returns the
number of characters a vector could contain in its actual memory. If you exceed the
capacity (), the vector has to reallocate its internal memory.

The capacity of a vector is important for two reasons:

1. Reallocation invalidates all references, pointers, and iterators for elements of the vector.
2. Reallocation takes time.

Thus, if a program manages pointers, references, or iterators into a vector, or if speed is a goal, it
is important to take the capacity into account.

To avoid reallocation, you can use reserve () to ensure a certain capacity before you really
need it. In this way, you can ensure that references remain valid as long as the capacity is not
exceeded:

dyne-book 133

The C++ Standard Library

std: :vector<int> v; // create an empty vector
v.reserve (80); // reserve memory for 80 elements

Another way to avoid reallocation is to initialize a vector with enough elements by passing
additional arguments to the constructor. For example, if you pass a numeric value as parameter,
it is taken as the starting size of the vector:

std::vector<T> v (5); // creates a vector and initializes it
with five values
// (calls five times the default
constructor of type T)

Of course, the type of the elements must provide a default constructor for this ability. But note
that for complex types, even if a default constructor is provided, the initialization takes time. If the
only reason for initialization is to reserve memory, you should use reserve () .

The concept of capacity for vectors is similar to that for strings (see Section 11.2.5), with one
big difference: Unlike strings, it is not possible to call reserve () for vectors to shrink the
capacity. Calling reserve () with an argument that is less than the current capacity is a no-op.
Furthermore, how to reach an optimal performance regarding speed and memory usage is
implementation defined. Thus, implementations might increase capacity in larger steps. In fact, to
avoid internal fragmentation, many implementations allocate a whole block of memory (such as
2K) the first time you insert anything if you don't call reserve () first yourself. This can waste
Jots of memory if you have many vectors with only a few small elements.

Because the capacity of vectors never shrinks, it is guaranteed that references, pointers, and
iterators remain valid even when elements are deleted or changed, provided they refer to a
position before the manipulated elements. However, insertions may invalidate references,
pointers, and iterators.

There is a way to shrink the capacity indirectly: Swapping the contents with another vector swaps
the capacity. The following function shrinks the capacity while preserving the elements:

template <class T>
void shrinkCapacity(std::vector<T>& v)
{

std: :vector<T> tmp (V) ; // copy elements into a new vector
v.swap (tmp) ; // swap internal vector data

}
You can even shrink the capacity without calling this function by calling the following statement!® :

11 you (or your compiler) might consider this statement as being incorrect because it calls a nonconstant
member function for a temporary value. However, standard C++ allows you to call a nonconstant member
function for temporary values.

//shrink capacity of vector v for type T
std::vector<T> (v) .swap (V) ;

However, note that after swap (), all references, pointers, and iterators swap their containers.

They still refer to the elements to which they referred on entry. Thus, shrinkCapacity ()
invalidates all references, pointers, and iterators.

6.2.2 Vector Operations

dyne-book 134

The C++ Standard Library

Create, Copy, and Destroy Operations

Table 6.2 lists the constructors and destructors for vectors. You can create vectors with and
without elements for initialization. If you pass only the size, the elements are created with their
default constructor. Note that an explicit call of the default constructor also initializes fundamental
types such as int with zero (this language feature is covered on page 14). See Section 6.1.2,
for some remarks about possible initialization sources.

Table 6.2. Constructors and Destructors of Vectors

Operation Effect

vector<Elem> c Creates an empty vector without any elements

vector<Elem> cl (c2) Creates a copy of another vector of the same type (all elements
are copied)

vector<Elem> c (n) Creates a vector with n elements that are created by the default
constructor

vector<Elem> c (n,elem) Creates a vector initialized with n copies of element elem

vector<Elem> Creates a vector initialized with the elements of the range

c (beg, end) [beg, end)

c. vector<Elem> () Destroys all elements and frees the memory

Nonmodifying Operations

Table 6.3 lists all nonmodifying operations of vectors.”? See additional remarks in Section
6.1.2, and Section 6.2.1.

1 reserve () manipulates the vector because it invalidates references, pointers, and iterators to elements.
However, it is mentioned here because it does not manipulate the logical contents of the container.

Table 6.3. Nonmodifying Operations of Vectors

Operation Effect
c.size() Returns the actual number of elements
c.empty () Returns whether the container is empty (equivalent to size () ==0, but might
be faster)
c.max_size () Returns the maximum number of elements possible
capacity () Returns the maximum possible number of elements without reallocation
reserve () Enlarges capacity, if not enough yet!”!
cl == c2 Returns whether c1 is equal to c2
cl != c2 Returns whether c1 is not equal to c2 (equivalentto ! (cl==c2))
cl < c2 Returns whether c1 is less than c2
cl > c2 Returns whether c1 is greater than c2 (equivalent to c2<c1)
cl <= c2 Returns whether c1 is less than or equal to c2 (equivalentto ! (c2<c1))
cl >= c2 Returns whether c1 is greater than or equal to c2 (equivalentto ! (cl1<c2))

dyne-book 135

The C++ Standard Library

Assignments

Table 6.4. Assignment Operations of Vectors

Operation Effect
cl = c2 Assigns all elements of c2 to c1
c.assign(n,elem) Assigns n copies of element elem
c.assign (beg, end) Assigns the elements of the range [beg, end)
cl.swap(c2) Swaps the data of c1 and c2
swap (cl,c2) Same (as global function)

Table 6.4 lists the ways to assign new elements while removing all ordinary elements. The set of
assign () functions matches the set of constructors. You can use different sources for
assignments (containers, arrays, standard input) similar to those described for constructors on
page 144. All assignment operations call the default constructor, copy constructor, assignment
operator, and/or destructor of the element type, depending on how the number of elements
changes. For example:

std::1list<Elem> 1;
std: :vector<Elem> coll;

//make coll be a copy of the contents of 1
coll.assign(l.begin(),l.end());

Element Access

Table 6.5 shows all vector operations for direct element access. As usual in C and C++, the first
element has index 0 and the last element has index size () -1. Thus, the nth element has index
n-1. For nonconstant vectors, these operations return a reference to the element. Thus you could
modify an element by using one of these operations (provided it is not forbidden for other
reasons).

Table 6.5. Direct Element Access of Vectors
Operation Effect
c.at (1dx) Returns the element with index idx (throws range error exception if idx is out of
range)
clidx] Returns the element with index idx (no range checking)
c.front () Returns the first element (no check whether a first element exists)
c.back () |Returns the last element (no check whether a last element exists)

The most important issue for the caller is whether these operations perform range checking. Only
at () performs range checking. If the index is out of range, it throws an out of range
exception (see Section 3.3). All other functions do not check. A range error results in undefined
behavior. Calling operator []1, front (), and back () for an empty container always results in
undefined behavior:

std::vector<Elem> coll; // empty!
coll [5] = elem; // RUNTIME ERROR ? undefined behavior
std::cout << coll. front (); // RUNTIME ERROR ? undefined behavior

dyne-book 136

The C++ Standard Library

So, you must ensure that the index for operator [] is valid and the container is not empty when
either front () orback () is called:

std::vector<Elem> coll; // empty!

if (coll.size() > 5) {

coll [5] = elem; // OK
}
if (!coll.empty()) {
cout << coll.front(); // OK
}
coll.at (5) = elem; // throws out of range exception

Iterator Functions

Vectors provide the usual operators to get iterators (Table 6.6). Vector iterators are random
access iterators (see Section 7.2, for a discussion of iterator categories). Thus, in principle you
could use all algorithms of the STL.

Table 6.6. Iterator Operations of Vectors

Operation Effect
c.begin() |Returns a random access iterator for the first element
c.end() Returns a random access iterator for the position after the last element
c.rbegin () |Returns a reverse iterator for the first element of a reverse iteration
c.rend () |Returns a reverse iterator for the position after the last element of a reverse
iteration

The exact type of these iterators is implementation defined. However, for vectors they are often
ordinary pointers. An ordinary pointer is a random access iterator, and because the internal
structure of a vector is usually an array, it has the correct behavior. However, you can't count on
it. For example, if a safe version of the STL that checks range errors and other potential problems
is used, the iterator type is usually an auxiliary class. See Section 7.2.6, for a look at the nasty
difference between iterators implemented as pointers and iterators implemented as classes.

Iterators remain valid until an element with a smaller index gets inserted or removed, or
reallocation occurs and capacity changes (see Section 6.2.1).

Inserting and Removing Elements

Table 6.7 shows the operations provided for vectors to insert or to remove elements. As usual
by using the STL, you must ensure that the arguments are valid. lterators must refer to valid
positions, the beginning of a range must have a position that is not behind the end, and you must
not try to remove an element from an empty container.

Regarding performance, you should consider that inserting and removing happens faster when

e Elements are inserted or removed at the end
e The capacity is large enough on entry
e Multiple elements are inserted by a single call rather than by multiple calls

dyne-book 137

The C++ Standard Library

Inserting or removing elements invalidates references, pointers, and iterators that refer to the
following elements. If an insertion causes reallocation, it invalidates all references, iterators, and

pointers.

Table 6.7. Insert and Remove Operations of Vectors

Operation
c.insert (pos,elem)

c.insert (pos,n,elem)

c.insert (pos, beg, end)

c.push back(elem)
c.pop_back()

c.erase (pos)
c.erase (beg, end)
c.resize (num)
c.resize (num,elem)

c.clear ()

Effect

Inserts at iterator position pos a copy of elem and returns the
position of the new element

Inserts at iterator position pos n copies of elem (returns nothing)

Inserts at iterator position pos a copy of all elements of the range
[beg, end) (returns nothing)

Appends a copy of elem at the end
Removes the last element (does not return it)

Removes the element at iterator position pos and returns the
position of the next element

Removes all elements of the range [beg, end) and returns the
position of the next element

Changes the number of elements to num (if size () grows, new
elements are created by their default constructor)

Changes the number of elements to num (if size () grows, new
elements are copies of elem)

Removes all elements (makes the container empty)

Vectors provide no operation to remove elements directly that have a certain value. You must use
an algorithm to do this. For example, the following statement removes all elements that have the

value val:

std: :vector<Elem>

coll;

//remove all elements with value val
coll.erase (remove (coll.begin(),coll.end(),

val),

coll.end());

This statement is explained in Section 5.6.1.

To remove only the first element that has a certain value, you must use the following statements:

std: :vector<Elem>

coll;

//remove first element with value val

std::vector<Elem>:

:iterator pos;

pos = find(coll.begin(),coll.end(),

val) ;

if (pos !'= coll.end()) {
coll.erase (pos);

dyne-book

138

The C++ Standard Library

6.2.3 Using Vectors as Ordinary Arrays

The C++ standard library does not state clearly whether the elements of a vector are required to
be in contiguous memory. However, it is the intention that this is guaranteed and it will be fixed
due to a defect report. Thus, you can expect that for any valid index i in vector v, the following
yields true:

&vi[i] == &v[0] + 1
This guarantee has some important consequences. It simply means that you can use a vector in

all cases in which you could use a dynamic array. For example, you can use a vector to hold data
of ordinary C-strings of type char* or const char*:

std: :vector<char> v; // create vector as dynamic array of chars

v.resize (41); // make room for 41 characters (including
'\O ')

strcpy (&v[0], "hello, world"); // copy a C-string into the vector

printf ("$s\n", &v[0]); // print contents of the vector as C-string

Of course, you have to be careful when you use a vector in this way (like you always have to be
careful when using dynamic arrays). For example, you have to ensure that the size of the vector
is big enough to copy some data into it and that you have an '\0' element at the end if you use
the contents as a C-string. However, this example shows that whenever you need an array of
type T for any reason (such as for an existing C library) you can use a vector<T> and pass the
address of the first element.

Note that you must not pass an iterator as the address of the first element. Iterators of vectors
have an implementation-specific type, which may be totally different from an ordinary pointer:

printf ("$s\n", v.begin()); // ERROR (might work, but not portable)
printf ("$s\n", &v[0]); // OK

6.2.4 Exception Handling

Vectors provide only minimal support for logical error checking. The only member function for
which the standard requires that it may throw an exception is at () , which is the safe version of
the subscript operator (see page 152). In addition, the standard requires that only the usual
standard exceptions may occur, such as bad _alloc for a lack of memory or exceptions of user-
defined operations.

If functions called by a vector (functions for the element type or functions that are user supplied)
throw exceptions, the C++ standard library guarantees the following:

1. If an element gets inserted with push_back () and an exception occurs, this function has
no effect.

2. insert () either succeeds or has no effect if the copy operations (copy constructor and
assignment operator) of the elements do not throw.

3. pop back () does not throw any exceptions.

4. erase() and clear do not throw if the copy operations (copy constructor and
assignment operator) of the elements do not throw.

dyne-book 139

The C++ Standard Library

swap () does not throw.

If elements are used that never throw exceptions on copy operations (copy constructor
and assignment operator), every operation is either successful or has no effect. Such
elements might be "plain old data" (POD). POD describes types that use no special C++

feature. For example, every ordinary C structure is POD.

All these guarantees are based on the requirements that destructors don't throw. See Section
5.11.2, for a general discussion of exceptions handling in the STL and Section 6.10.10, for a
list of all container operations that give special guarantees in face of exceptions.

6.2.5 Examples of Using Vectors

The following example shows a simple usage of vectors:

// cont/vectorl.cpp

#include
#include
#include
#include

<iostream>
<vector>
<string>
<algorithm>

using namespace std;

int main ()

{

//create empty vector for strings
vector<string> sentence;

//reserve memory for five elements to avoid reallocation
sentence.reserve (5);

//append some elements
sentence.push back("Hello,");
sentence.push back ("how") ;
sentence.push back ("are");
sentence.push back ("you") ;
sentence.push back ("?")

Iz

//print elements separated with spaces
copy (sentence.begin(), sentence.end(),

ostream iterator<string>(cout," "));
cout << endl;

"'"technical data''

" << sentence.max size() << endl;
" << sentence.size() << endl;
" << sentence.capacity() << endl;

//print
cout << " max size():
cout << " size():

cout << " capacity():

//swap second and fourth element
swap (sentence[l], sentence [3]);

//insert element "always" before element "?"
sentence.insert (find(sentence.begin(),sentence.end(),"?"),
"always");

dyne-book 140

The C++ Standard Library

//assign "!" to the last element
sentence.back() = "!";

//print elements separated with spaces
copy (sentence.begin(), sentence.end(),

ostream iterator<string>(cout," "));
cout << endl;

//print "technical data" again

cout << " max size(): " << sentence.max size() << endl;
cout << " size(): " << sentence.size () << endl;
cout << " capacity(): " << sentence.capacity() << endl;

The output of the program might look like this:

Hello, how are you ?
max size(): 268435455

size(): 5
capacity(): 5

Hello, you are how always !
max size(): 268435455
size(): 6
capacity(): 10

Note my use of the word "might" The values of max size() and capacity() are
implementation defined. Here, for example, you can see that the implementation doubles the
capacity if the capacity no longer fits.

6.2.6 Class vector<bool>

For Boolean elements of a vector, the C++ standard library provides a specialization of vector.
The goal is to have a version that is optimized to use less size than a usual implementation of
vector for type bool. Such a usual implementation would reserve at least 1 byte for each
element. The vector<bool> specialization usually uses internally only 1 bit for an element, so it
is typically eight times smaller. Note that such an optimization also has a snag: In C++, the
smallest addressable value must have a size of at least 1 byte. Thus, such a specialization of a
vector needs special handling for references and iterators.

As a result, a vector<bool> does not meet all requirements of other vectors (for example, a
vector<bool>: :reference is not a true Ivalue and vector<bool>::iterator is not a
random access iterator). Therefore, template code might work for vectors of any type except
bool. In addition, vector<bool> might perform slower than normal implementations because
element operations have to be transformed into bit operations. However, how vector<bool> is
implemented is implementation specific. Thus, the performance (speed and memory) might differ.

Note that class vector<bool> is more than a specialization of vector<> for bool. It also
provides some special bit operations. You can handle bits or flags in a more convenient way.

vector<bool> has a dynamic size, so you can consider it a bitfield with dynamic size. Thus,
you can add and remove bits. If you need a bitfield with static size, you should use bitset rather
than a vector<bool>. Class bitset is covered in Section 10.4.

dyne-book 141

The C++ Standard Library

Table 6.8. Special Operations of vector<bool>

Operation Effect
c.flip() Negates all Boolean elements (complement of all bits)
m[idx].flip() Negates the Boolean element with index idx (complement of a single bit)
m[idx] =val Assigns val to the Boolean element with index idx (assignment to a
single bit)
m[idx1] = Assigns the value of the element with index idx2 to the element with
m[idx2] index idx1

The additional operations of vector<bool> are shown in Table 6.8. The operation flip (),
which processes the complement, can be called for all bits and a single bit of the vector. Note that
you can call f1ip () for a single Boolean element. This is surprising, because you might expect
that the subscript operator returns bool and that calling f1ip () for such a fundamental type is
not possible. Here the class vector<bool> uses a common trick, called a proxy® : For
vector<bool>, the return type of the subscript operator (and other operators that return an
element) is an auxiliary class. If you need the return value to be bool, an automatic type
conversion is used. For other operations, the member functions are provided. The relevant part of
the declaration of vector<bool> looks like this:

(81 A proxy allows you to keep control where usually no control is provided. This is often used to get more
security. In this case, it maintains control to allow certain operations, although the return value in principle
behaves as bool.

namespace std {
class vector<bool> {
public:
//auxiliary type for subscript operator
class reference {

public:

//automatic type conversion to bool
operator bool () const;

//assignments

reference& operator= (const bool);
referenceé& operator= (const references);

//bit complement
void flip();

//operations for element access

//-return type is reference instead of bool
reference operator([] (size type n);
reference at(size type n);

reference front();

reference back();

dyne-book 142

The C++ Standard Library

As you can see, all member functions for element access return type reference. Thus, you
could also use the following statement:

c.front () .flip(); // negate first Boolean element

c.at(5) = c.back(); // assign last element to element with index 5

As usual, to avoid undefined behavior, the caller must ensure that the first, last, and sixth
elements exist.

The internal type reference is only used for nonconstant containers of type vector<bool>.
The constant member functions for element access return ordinary values of type bool.

6.3 Deques

A deque (pronounced "deck") is very similar to a vector. It manages its elements with a dynamic
array, provides random access, and has almost the same interface as a vector. The difference is
that with a deque the dynamic array is open at both ends. Thus, a deque is fast for insertions and
deletions at both the end and the beginning (Figure 6.2).

Figure 6.2. Logical Structure of a Deque

To provide this ability, the deque is implemented typically as a bunch of individual blocks, with the
first block growing in one direction and the last block growing in the opposite direction (Figure
6.3).

Figure 6.3. Internal Structure of a Deque

] | 1 1 I 1
e — - o o — ====4 >

To use a deque, you must include the header file <deque>!:

1 In the original STL, the header file for deques was <deque .h>.

dyne-book 143

The C++ Standard Library

#include <deque>

There, the type is defined as a template class inside namespace std:

namespace std {
template <class T,
class Allocator = allocator<T> >
class deque;

As with vectors, the type of the elements is passed as a first template parameter and may be of
any type that is assignable and copyable. The optional second template argument is the memory
model, with allocator as the default (see Chapter 15).1:

[0l systems without support for default template parameters, the second argument is typically missing.

6.3.1 Abilities of Deques
Deques have the following differences compared with the abilities of vectors:

e Inserting and removing elements is fast both at the beginning and at the end (for vectors
it is only fast at the end). These operations are done in amortized constant time.

e The internal structure has one more indirection to access the elements, so element
access and iterator movement of deques are usually a bit slower.

e lterators must be smart pointers of a special type rather than ordinary pointers because
they must jump between different blocks.

e In systems that have size limitations for blocks of memory (for example, some PC
systems), a deque might contain more elements because it uses more than one block of
memory. Thus, max_size () might be larger for deques.

e Deques provide no support to control the capacity and the moment of reallocation. In
particular, any insertion or deletion of elements other than at the beginning or end
invalidates all pointers, references, and iterators that refer to elements of the deque.
However, reallocation may perform better than for vectors, because according to their
typical internal structure, deques don't have to copy all elements on reallocation.

¢ Blocks of memory might get freed when they are no longer used, so the memory size of a
deque might shrink (however, whether and how this happens is implementation specific).

The following features of vectors also apply to deques:

e Inserting and deleting elements in the middle is relatively slow because all elements up to
either of both ends may be moved to make room or to fill a gap.
e lterators are random access iterators.

In summary, you should prefer a deque if the following is true:

You insert and remove elements at both ends (this is the classic case for a queue).
You don't refer to elements of the container.

e It is important that the container frees memory when it is no longer used (however, the
standard does not guarantee that this happens).

dyne-book 144

The C++ Standard Library

The interface of vectors and deques is almost the same, so trying both is very easy when no
special feature of a vector or a deque is necessary.

6.3.2 Deque Operations

Table 6.9 through Table 6.11 list all operations provided for deques.

Table 6.9. Constructors and Destructor of Deques

Operation Effect

deque<Elem> c Creates an empty deque without any elements

deque<Elem> cl (c2) Creates a copy of another deque of the same type (all elements are
copied)

deque<Elem> c(n) Creates a deque with n elements that are created by the default
constructor

deque<Elem> c(n,elem) |Creates a deque initialized with n copies of element elem

deque<Elem> Creates a deque initialized with the elements of the range

c (beg, end) [beg, end)

c. deque<Elem> () Destroys all elements and frees the memory

Table 6.10. Nonmodifying Operations of Deques

Operation Effect

c.size() Returns the actual number of elements

c.empty () Returns whether the container is empty (equivalent to size () ==0, but might

be faster)

c.max_size()

cl == c2
cl != c2
cl < c2
cl > c2
cl <= c2
cl >= c2
c.at (idx)
[1idx]

Operation
cl = c2

c.assign (n,

Returns the maximum number of elements possible

Returns whether c1 is equal to c2

Returns whether c1 is not equal to c2 (equivalentto | (cl==c2))

Returns whether c1 is less than c2

Returns whether c1 is greater than c2 (equivalent to c2<c1)

Returns whether c1 is less than or equal to c2 (equivalentto ! (c2<cl))
Returns whether c1 is greater than or equal to c2 (equivalentto ! (cl<c2))

Returns the element with index idx (throws range error exception if idx is out
of range)

Returns the element with index idx (no range checking)

Returns the first element (no check whether a first element exists)
Returns the last element (no check whether a last element exists)
Returns a random access iterator for the first element

Returns a random access iterator for the position after the last element
Returns a reverse iterator for the first element of a reverse iteration

Returns a reverse iterator for the position after the last element of a reverse
iteration

Table 6.11. Modifying Operations of Deques
Effect
Assigns all elements of c2 to c1

elem) |Assigns n copies of element elem

c.assign (beg,end) Assigns the elements of the range [beg, end)

dyne-book

145

The C++ Standard Library

cl.swap(c2) Swaps the data of c1 and c2

swap (cl,c2) Same (as global function)

c.insert Inserts at iterator position pos a copy of elem and returns the position
(pos, elem) of the new element

c. insert Inserts at iterator position pos n copies of elem (returns nothing)
(pos,n,elem)

c.insert Inserts at iterator position pos a copy of all elements of the range
(pos,beg, end) [beg, end) (returns nothing)

c.push_back (elem) Appends a copy of elem at the end

c.pop_back () Removes the last element (does not return it)

c.push_front Inserts a copy of elem at the beginning

(elem)

c.pop_front () Removes the first element (does not return it)

c.erase (pos) Removes the element at iterator position pos and returns the position of

the next element

c.erase (beg,end) |Removes all elements of the range [beg, end) and returns the position
of the next element

c. resize (num) Changes the number of elements to num (if size () grows, new
elements are created by their default constructor)

c.resize (num, Changes the number of elements to num (if size () grows, new

elem) elements are copies of elem)

c.clear() Removes all elements (makes the container empty)

Deque operations differ from vector operations only as follows:

1. Deques do not provide the functions for capacity (capacity () and reserve ()).
2. Deques do provide direct functions to insert and to delete the first element (push front
() and pop_front ()).

Because the other operations are the same, they are not reexplained here. See Section 6.2.2,
for a description of them.

Note that you still must consider the following:

1. No member functions for element access (except at ()) check whether an index or an
iterator isvalid.

2. An insertion or deletion of elements might cause a reallocation. Thus, any insertion or
deletioninvalidates all pointers, references, and iterators that refer to other elements of
the deque. Theexception is when elements are inserted at the front or the back. In this
case, references andpointers to elements stay valid (but iterators don't).

6.3.3 Exception Handling

In principle, deques provide the same support for exception handing as do vectors (see page
155). The additional operations push front() and pop front() behave according to
push back() and pop back () respectively. Thus, the C++ standard library provides the
following behavior:

dyne-book 146

The C++ Standard Library

e If an element gets inserted with push back () orpush front () and an exception
occurs, these functions have no effect.
e Neither pop back () norpop front () throw any exceptions.

See Section 5.11.2, for a general discussion of exceptions handling in the STL and Section
6.10.10, for a list of all container operations that give special guarantees in face of exceptions.

6.3.4 Examples of Using Deques

The following program is a simple example that shows the abilities of deques:
// cont/dequel. cpp

#include <iostream>
#include <deque>
#include <string>
#include <algorithm>
using namespace std;

int main ()

{

//create empty deque of strings
deque<string> coll;

//insert several elements
coll.assign (3, string("string"));
coll.push back ("last string");
coll.push front ("first string");

//print elements separated by newlines
copy (coll.begin(), coll.end(),

ostream iterator<string>(cout,"\n"));
cout << endl;

//remove first and last element
coll.pop front();
coll.pop back();

//insert ''another'' into every element but the first
for (int i=1; i<coll.size(); ++1i) {
coll[i] = "another " + coll [i];

}

//change size to four elements
coll.resize (4, "resized string");

//print elements separated by newlines
copy (coll.begin(), coll.end(),
ostream iterator<string>(cout,"\n"));

dyne-book 147

The C++ Standard Library

The program has the following output:

first string
string
string
string
last string

string

another string
another string
resized string

6.4 Lists

A list manages its elements as a doubly linked list (Figure 6.4). As usual, the C++ standard
library does not specify the kind of the implementation, but it follows from the list's name,
constraints, and specifications.

Figure 6.4. Structure of a List

> = e - > >
- -

To use a list you must include the header file <1ist>:
11 |n the original STL, the header file for lists was <1ist.h>.
#include <list>
There, the type is defined as a template class inside namespace std:
namespace std {
template <class T,
class Allocator = allocator<T> >
class list;

}

The elements of a list may have any type T that is assignable and copyable. The optional second
template parameter defines the memory model (see Chapter 15). The default memory model is
the model allocator, which is provided by the C++ standard library.*#

2l systems without support for default template parameters, the second argument is typically missing.

6.4.1 Abilities of Lists

The internal structure of a list is totally different from a vector or a deque. Thus, a list differs in
several major ways compared with vectors and deques:

dyne-book 148

The C++ Standard Library

A list does not provide random access. For example, to access the fifth element, you
must navigate the first four elements following the chain of links. Thus, accessing an
arbitrary element using a list is slow.

Inserting and removing elements is fast at each position, and not only at one or both
ends. You can always insert and delete an element in constant time because no other
elements have to be moved. Internally, only some pointer values are manipulated.
Inserting and deleting elements does not invalidate pointers, references, and iterators to
other elements.

A list supports exception handling in such a way that almost every operation succeeds or
is a no-op. Thus, you can't get into an intermediate state in which only half of the
operation is complete.

The member functions provided for lists reflect these differences compared with vectors and
deques as follows:

Lists provide neither a subscript operator nor at () because no random access is
provided.

Lists don't provide operations for capacity or reallocation because neither is needed.
Each element has its own memory that stays valid until the element is deleted.

Lists provide many special member functions for moving elements. These member
functions are faster versions of general algorithms that have the same names. They are
faster because they only redirect pointers rather than copy and move the values.

6.4.2 List Operations

Create, Copy, and Destroy Operations

The ability to create, copy, and destroy lists is the same as it is for every sequence container. See
Table 6.12 for the list operations that do this. See also Section 6.1.2, for some remarks about
possible initialization sources.

Table 6.12. Constructors and Destructor of Lists

Operation Effect
list<Elem> c Creates an empty list without any elements
list<Elem> cl (c2) Creates a copy of another list of the same type (all elements are
copied)
list<Elem> c(n) Creates a list with n elements that are created by the default
constructor

list<Elem> c(n,elem) |Creates a listinitialized with n copies of element elem

list<Elem> c Creates a list initialized with the elements of the range [beg, end)
(beg, end)
c. list<Elem>() Destroys all elements and frees the memory

Nonmodifying Operations

Lists provide the usual operations for size and comparisons. See Table 6.13 for a list and
Section 6.1.2, for details.

Table 6.13. Nonmodifying Operations of Lists

Operation Effect

dyne-book 149

The C++ Standard Library

c.size() Returns the actual number of elements

c. empty () |Returns whether the container is empty (equivalentto size () ==0, but might
be faster)

c.max_size () Returns the maximum number of elements possible

cl == c2 Returns whether c1 is equal to c2

cl !=c2 Returns whether c1 is not equal to c2 (equivalentto ! (cl==c2))

cl < c2 Returns whether c1 is less than c2

cl > c2 Returns whether c1 is greater than c2 (equivalent to c2<c1)

cl <= c2 Returns whether c1 is less than or equal to c2 (equivalentto ! (c2<cl))

cl >= c2 Returns whether c1 is greater than or equal to c2 (equivalentto ! (c1<c2))

Assignments
Lists also provide the usual assignment operations for sequence containers (Table 6.14).

Table 6.14. Assignment Operations of Lists

Operation Effect
cl = c2 Assigns all elements of c2 to c1
c.assign(n,elem) Assigns n copies of element elem
c.assign (beg, end) Assigns the elements of the range [beg, end)
cl.swap (c2) Swaps the data of c1 and c2
swap (cl,c2) Same (as global function)

As usual, the insert operations match the constructors to provide different sources for initialization
(see Section 6.1.2, for details).

Element Access

Because a list does not have random access, it provides only front () and back() for
accessing elements directly (Table 6.15).

Table 6.15. Direct Element Access of Lists

Operation Effect
c.front () Returns the first element (no check whether a first element exists)
c.back() Returns the last element (no check whether a last element exists)

As usual, these operations do not check whether the container is empty. If the container is empty,
calling them results in undefined behavior. Thus, the caller must ensure that the container
contains at least one element. For example:

std::list<Elem> coll; // empty!
std::cout << coll.front(); // RUNTIME ERROR ? undefined behavior
if (!coll.empty()) {

std::cout << coll.back(); // OK

dyne-book 150

The C++ Standard Library

Iterator Functions

To access all elements of a list, you must use iterators. Lists provide the usual iterator functions
(Table 6.16). However, because a list has no random access, these iterators are only
bidirectional. Thus, you can't call algorithms that require random access iterators. All algorithms
that manipulate the order of elements a lot (especially sorting algorithms) fall under this category.
However, for sorting the elements, lists provide the special member function sort () (see page
245).

Table 6.16. Iterator Operations of Lists

Operation Effect
c.begin() |Returns a bidirectional iterator for the first element
c.end() Returns a bidirectional iterator for the position after the last element
c.rbegin () |Returns a reverse iterator for the first element of a reverse iteration
c.rend () |Returns a reverse iterator for the position after the last element of a reverse
iteration

Inserting and Removing Elements

Table 6.17 shows the operations provided for lists to insert and to remove elements. Lists
provide all functions of deques, supplemented by special implementations of the remove () and
remove if () algorithms.

As usual by using the STL, you must ensure that the arguments are valid. Iterators must refer to
valid positions, the beginning of a range must have a position that is not behind the end, and you
must not try to remove an element from an empty container.

Inserting and removing happens faster if, when working with multiple elements, you use a single
call for all elements rather than multiple calls.

For removing elements, lists provide special implementations of the remove () algorithms (see
Section 9.7.1). These member functions are faster than the remove () algorithms because they
manipulate only internal pointers rather than the elements. So, in contrast to vectors or deques,
you should call remove () as a member function and not as an algorithm (as mentioned on page
154). To remove all elements that have a certain value, you can do the following (see Section
5.6.3, for further details):

std::1list<Elem> coll;

//remove all elements with value val
coll.remove (val) ;

Table 6.17. Insert and Remove Operations of Lists
Operation Effect

c.insert (pos, elem) |Inserts atiterator position pos a copy of elem and returns the
position of the new element

c.insert (pos,n, Inserts at iterator position pos n copies of elem (returns nothing)
elem)

dyne-book 151

The C++ Standard Library

c. insert (pos, Inserts at iterator position pos a copy of all elements of the range

beg, end) [beg, end) (returns nothing)

c.push_back (elem) Appends a copy of elem at the end

c.pop_back () Removes the last element (does not return it)

c.push_front (elem) Inserts a copy of elem at the beginning

c.pop_front () Removes the first element (does not return it)

c. remove (val) Removes all elements with value val

c.remove if (op) Removes all elements for which op (elem) yields true

c. erase (pos) Removes the element at iterator position pos and returns the
position of the next element

c.erase (beg,end) Removes all elements of the range [beg, end) and returns the
position of the next element

c. resize (num) Changes the number of elements to num (if size () grows, new
elements are created by their default constructor)

c.resize (num, elem) Changes the number of elements to num (if size () grows, new

elements are copies of elem)

c. clear () Removes all elements (makes the container empty)
However, to remove only the first occurrence of a value, you must use an algorithm such as that
mentioned on page 154 for vectors.

You can use remove if () to define the criterion for the removal of the elements by a function
or a function object.®! remove if () removes each element for which calling the passed
operation yields true. An example of the use of remove if () is a statement to remove all
elements that have an even value:

[13) The remove_if () member function is usually not provided in systems that do not support member
templates.

list.remove if (notl (bind2nd(modulus<int>(),2)));

If you don't understand this statement, don't panic. Turn to page 306 for details. See page 378 for
additional examples of remove () and remove if ().

Splice Functions

Linked lists have the advantage that you can remove and insert elements at any position in
constant time. If you move elements from one container to another, this advantage doubles in
that you only need to redirect some internal pointers (Figure 6.5).

Figure 6.5. Splice Operations to Change the Order of List Elements

dyne-book 152

The C++ Standard Library

To support this ability, lists provide not only remove () but also additional modifying member
functions to change the order of and relink elements and ranges. You can call these operations to
move elements inside a single list or between two lists, provided the lists have the same type.
Table 6.18 lists these functions. They are covered in detail in Section 6.10.8, with examples in
Section 6.4.4.

Table 6.18. Special Modifying Operations for Lists

Operation Effect

c.unique () Removes duplicates of consecutive elements with the
same value

c.unique (op) Removes duplicates of consecutive elements, for which
op () yields true

cl.splice (pos,c2) Moves all elements of c2 to c1 in front of the iterator
position pos

cl.splice(pos,c2,c2pos) Moves the element at c2pos in c2 in front of pos of list

c1 (c1 and c2 may be identical)

cl.splice(pos,c2,cZ2beg, c2end) Moves all elements of the range [c2beg, c2end) in c2
in front of pos of list c1 (c1 and c2 may be identical)

c.sort () Sorts all elements with operator <
c.sort (op) Sorts all elements with op ()
cl.merge (c2) Assuming both containers contain the elements sorted,

moves all elements of c2 into c1 so that all elements are
merged and still sorted

cl.merge (c2, op) Assuming both containers contain the elements sorted
due to the sorting criterion op () , moves all elements of
c2 into c1 so that all elements are merged and still
sorted according to op ()

c.reverse () Reverses the order of all elements

6.4.3 Exception Handling

Lists have the best support of exception safety of the standard containers in the STL. Almost all
list operations will either succeed or have no effect. The only operations that don't give this
guarantee in face of exceptions are assignment operations and the member function sort ()
(they give the usual "basic guarantee" that they will not leak resources or violate container
invariants in the face of exceptions), merge (), remove(), remove if (), and unique ()
give guarantees under the condition that comparing the elements (using operator == or the
predicate) doesn't throw. Thus, to use a term from database programming, you could say that
lists are fransaction safe, provided you don't call assignment operations or sort () and ensure
that comparing elements doesn't throw. Table 6.19 lists all operations that give special
guarantees in face of exceptions. See Section 5.11.2, for a general discussion of exception
handling in the STL.

dyne-book 153

The C++ Standard Library

Table 6.19. List Operations with Special Guarantees in Face of Exceptions

Operation
push back ()
push front ()
()
pop_back ()

insert

pop_ front ()
erase ()
clear ()
resize ()
remove ()
remove if ()
Unique ()
splice ()
Merge ()
reverse ()

swap ()

Guarantee

Either succeeds or has no effect
Either succeeds or has no effect
Either succeeds or has no effect

Doesn't throw
Doesn't throw
Doesn't throw
Doesn't throw

Either succeeds or has no effect

Doesn't throw if comparing the elements doesn't throw
Doesn't throw if the predicate doesn't throw

Doesn't throw if comparing the elements doesn't throw

Doesn't throw

Either succeeds or has no effect if comparing the elements doesn't throw

Doesn't throw
Doesn't throw

6.4.4 Examples of Using Lists

The following example in particular shows the use of the special member functions for lists:

// cont/listl.cpp

#include
#include
#include

<iostream>
<list>
<algorithm>

using namespace std;

void printLists

{

cout

copy
cout

copy
cout

}

<<
(11.begin(),
<< endl <<
(12.begin (),

(const list<int>& 11,

"listl: ";

const list<int>& 12)

r

ll.end (), ostream iterator<int>(cout," "));
"list2: ";
12.end (), ostream iterator<int>(cout," "));

<< endl << endl;

int main ()

{

//create two empty lists
list<int> listl,

list2;

//fill both lists with elements

for

(int 1=0;
listl.push back(i);
list2.push front(i);

1i<6;

++1) |

dyne-book

154

The C++ Standard Library

position

}

}

printLists (listl, 1list2);

//insert all elements of 1listl before the first element with
value 3 of list2
//-find ()

returns an literator to the first element with value 3
list2.splice(find(list2.begin(),list2.end(), // destination

3),
listl); // source list

printLists(listl, 1list2);

//move first element to the end

list2.splice(list2.end(),

// destination position
list2, // source list
list2.begin()); // source position

printLists (listl, 1list2);

//sort second list, assign to listl and remove duplicates
list2.sort();
listl = 1list2;
list2.unique();

printLists (listl, 1list2);

//merge both sorted lists into the first 1list
listl.merge (list2);
printLists (listl, 1list2);

The program has the following output:

listl:
list2:

01
4

listl:

list2:

listl:

list2:

listl:
list2:

listl:

list2:

2 3
32

4
1

5
0

222333444555

6.5 Sets and Multisets

Set and multiset containers sort their elements automatically according to a certain sorting
criterion. The difference between the two is that multisets allow duplicates, whereas sets do not
(see Figure 6.6 and the earlier discussion on this topic in Chapter 5).

Figure 6.6. Sets and Multisets

dyne-book

155

The C++ Standard Library

Set: Multiset:

To use a set or multiset, you must include the header file <set>!;

141 |n the original STL, the header file for sets was <set .h>, and for multisets it was <multiset.h>.

#include <set>

There, the type is defined as a template class inside namespace std:

namespace std {
template <class T,
class Compare = less<T>,
class Allocator = allocator<T> >
class set;

template <class T,

class Compare = less<T>,

class Allocator = allocator<T> >
class multiset;

The elements of a set or multiset may have any type T that is assignable, copyable, and
comparable according to the sorting criterion. The optional second template argument defines the
sorting criterion. If a special sorting criterion is not passed, the default criterion 1ess is used. The
function object 1ess sorts the elements by comparing them with operator < (see page 305 for
details about 1ess).!**! The optional third template parameter defines the memory model (see
Chapter 15). The default memory model is the model allocator, which is provided by the
C++ standard library.[*®

151 n systems without support for default template parameters, the second argument typically is mandatory.

161 n systems without support for default template parameters, the third argument typically is missing.

The sorting criterion must define "strict weak ordering." Strict weak ordering is defined by the
following three properties:

1. It has to be antisymmetric.
This means for operator <: If x < yistrue, theny < xis false.

This means for a predicate op () : If op (x, v) is true, then op (y, x) is false.

dyne-book 156

The C++ Standard Library

2. It has to be transitive.

This means for operator <: If x < yistrueandy < zistrue,then x < zis true.

This means for a predicate op () : If op (%, y) is true and op

op (x, z) is true.

3. It has to be irreflexive.

This means for operator <:x < x is always false.

This means for a predicate op () : op (x, x) is always false.

(y,z) istrue, then

Based on these properties the sorting criterion is also used to check equality. That is, two
elements are equal if neither is less than the other (or if both op (%, y) and op (y, x) are false).

6.5.1 Abilities of Sets and Multisets

Like all standardized associative container classes, sets and multisets are usually implemented
as balanced binary trees (Figure 6.7). The standard does not specify this, but it follows from the
complexity of set and multiset operations.[*”!

171 | fact, sets and multisets are typically implemented as "red-black trees." Red-black trees are good for
both changing the number of elements and searching for elements. They guarantee at most two internal
relinks on insertions and that the longest path is at least twice as long as the shortest path to an element.

Figure 6.7. Internal Structure of Sets and Multisets

2

L)

i

3

\

L

1

1

/

\

2

The major advantage of automatic sorting is that a binary tree performs well when elements with
a certain value are searched. In fact, search functions have logarithmic complexity. For example,

dyne-book

157

The C++ Standard Library

to search for an element in a set or multiset of 1,000 elements, a tree search (which is performed
by the member function) needs, on average, one fiftieth of the comparisons of a linear search
(which is performed by the algorithm). See Section 2.3, for more details about complexity.

However, automatic sorting also imposes an important constraint on sets and multisets: You may
not change the value of an element directly because this might compromise the correct order.

Therefore, to modify the value of an element, you must remove the element that has the old value
and insert a new element that has the new value. The interface reflects this behavior:

e Sets and multisets don't provide operations for direct element access.
e Indirect access via iterators has the constraint that, from the iterator's point of view, the
element value is constant.

6.5.2 Set and Multiset Operations
Create, Copy, and Destroy Operations

Table 6.20 lists the constructors and destructors of sets and multisets.

Operation Effect

set c Creates an empty set/multiset without any elements

set c (op) Creates an empty set/multiset that uses op as the sorting criterion

setcl (c2) Creates a copy of another set/multiset of the same type (all elements are
copied)

set c (beg, end) Creates a set/multiset initialized by the elements of the range [beg, end)
set c (beg, end, Creates a set/multiset with the sorting criterion op initialized by the elements

op) of the range [beg, end)
c. set() Destroys all elements and frees the memory

Here, set may be one of the following:

Table 6.20. Constructors and Destructors of Sets and Multisets

set Effect

set<Elem> A set that sorts with 1ess<> (operator <)
set<Elem, Op> A set that sorts with 0p

multiset<Elem> A multiset that sorts with 1ess<> (operator <)
multiset<Elem, Op> A multiset that sorts with 0p

You can define the sorting criterion in two ways:
1. As atemplate parameter.

For example!*s! :

[18] Note that you have to put a space between the two ">" characters. ">>" would be parsed as
shift operator, which would result in a syntax error.

std::set<int,std::greater<int> > coll;

dyne-book 158

The C++ Standard Library

In this case, the sorting criterion is part of the type. Thus, the type system ensures that
only containers with the same sorting criterion can be combined. This is the usual way to
specify the sorting criterion. To be more precise, the second parameter is the type of the
sorting criterion. The concrete sorting criterion is the function object that gets created with
the container. To do this, the constructor of the container calls the default constructor of
the type of the sorting criterion. See page 294 for an example that uses a user-defined
sorting criterion.

2. As a constructor parameter.

In this case, you might have a type for several sorting criteria, and the initial value or
state of the sorting criteria might differ. This is useful when processing the sorting
criterion at runtime and when sorting criteria are needed that are different but of the same
data type. See page 191 for a complete example.

If no special sorting criterion is passed, the default sorting criterion, function object 1ess<>, is
used, which sorts the elements by using operator <. [*°]

(91 systems without support for default template parameters, you typically must always pass the sorting
criterion as follows:

set<int, less<int> > coll;

Note that the sorting criterion is also used to check for equality of the elements. Thus, when the
default sorting criterion is used, the check for equality of two elements looks like this:

if (! (eleml<elem? || elem2<eleml))

This has three advantages:

1. You need to pass only one argument as the sorting criterion.

2. You don't have to provide operator == for the element type.

3. You can have contrary definitions for equality (it doesn't matter if operator == behaves
differently than in the expression). However, this might be a source of confusion.

However, checking for equality in this way takes a bit more time. This is because two
comparisons might be necessary to evaluate the previous expression. Note that if the result of the
first comparison yields true, the second comparison is not evaluated.

By now the type name of the container might be a bit complicated and boring, so it is probably a
good idea to use a type definition. This definition could be used as a shortcut wherever the
container type is needed (this also applies to iterator definitions):

typedef std::set<int,std::greater<int> > IntSet;

IntSet coll;
IntSet::iterator pos;

The constructor for the beginning and the end of a range could be used to initialize the container

with elements from containers that have other types, from arrays, or from the standard input. See
Section 6.1.2, for details.

Nonmodifying Operations

dyne-book 159

The C++ Standard Library

Sets and multisets provide the usual nonmodifying operations to query the size and to make
comparisons (Table 6.21).

Table 6.21. Nonmodifying Operations of Sets and Multisets

Operation Effect

c.size() Returns the actual number of elements

c.empty () Returns whether the container is empty (equivalent to size () ==0, but might
be faster)

c.max_size () Returns the maximum number of elements possible

cl == c2 Returns whether c1 is equal to c2

cl != c2 Returns whether c1 is not equal to c2 (equivalentto ! (c1==c2))

cl < c2 Returns whether c1 is less than c2

cl > c2 Returns whether c1 is greater than c2 (equivalent to c2<c1)

cl <= c2 Returns whether c1 is less than or equal to c2 (equivalentto ! (c2<cl))

cl >= c2 Returns whether c1 is greater than or equal to c2 (equivalentto ! (c1<c2))

Comparisons are provided only for containers of the same type. Thus, the elements and the
sorting criterion must have the same types; otherwise, a type error occurs at compile time. For
example:

std: :set<float> cl; // sorting criterion: std::less<>
std::set<float,std::greater<float> > c2;

if (¢l == c2) { // ERROR: different types
}

The check whether a container is less than another container is done by a lexicographical
comparison (see page 360). To compare containers of different types (different sorting criteria),
you must use the comparing algorithms in Section 9.5.4.

Special Search Operations

Sets and multisets are optimized for fast searching of elements, so they provide special search
functions (Table 6.22). These functions are special versions of general algorithms that have the
same name. You should always prefer the optimized versions for sets and multisets to achieve
logarithmic complexity instead of the linear complexity of the general algorithms. For example, a
search of a collection of 1,000 elements requires on average only 10 comparisons instead of 500
(see Section 2.3)).

Table 6.22. Special Search Operations of Sets and Multisets

Operation Effect

count (elem) Returns the number of elements with value elem

find(elem) Returns the position of the first element with value elem or end ()

lower _bound (Returns the first position, where e1em would get inserted (the first element
elem) >=elem)

upper _bound Returns the last position, where elem would get inserted (the first
(elem) element > elem)

equal range Returns the first and last position, where e1em would get inserted (the

dyne-book 160

The C++ Standard Library

(elem) range of elements == elem)

The find () member function searches the first element that has the value that was passed as
the argument and returns its iterator position. If no such element is found, find () returns end ()
of the container.

lower bound () and upper bound () return the first and last position respectively, at which an
element with the passed value would be inserted. In other words, lower bound () returns the
position of the first element that has the same or a greater value than the argument, whereas
upper bound () returns the position of the first element with a greater value. equal range ()
returns both return values of lower bound() and upper bound() as a pair (type pair is
introduced in Section 4.1). Thus, it returns the range of elements that have the same value as
the argument. If lower bound() or the first value of equal range() is equal to
upper bound () or the second value of equal range (), then no elements with the same
value exist in the set or multiset. Naturally, in a set the range of elements that have the same
values could contain at most one element.

The following example shows how to use lower bound(), upper bound(), and
equal range() :

// cont/set2.cpp

#include <iostream>
#include <set>
using namespace std;
int main ()

{

set<int> c;

c.insert (1) ;
c.insert (2);
c.insert (4);
c.insert (5);
c.insert (6);
cout << "lower bound(3): " << *c.lower bound(3) << endl;
cout << "upper bound(3): " << *c.upper bound(3) << endl;
cout << "equal range(3): " << *c.equal range(3).first << " "
<< *c.equal range(3) .second << endl;
cout << endl;
cout << "lower bound(5): " << *c.lower bound(5) << endl;
cout << "upper bound(5): " << *c.upper bound(5) << endl;
cout << "equal range(5): " << *c.equal range(5).first << " "
<< *c.equal range(5) .second << endl;

The output of the program is as follows:

lower bound(3): 4
upper bound(3): 4
equal range(3): 4 4
lower bound(5): 5

dyne-book 161

The C++ Standard Library

upper bound(5): 6
equal range(5): 5 6

If you use a multiset instead of a set, the program has the same output.

Assignments

Sets and multisets provide only the fundamental assignment operations that all containers
provide (Table 6.23). See page 147 for more details.

For these operations both containers must have the same type. In particular, the type of the
comparison criteria must be the same, although the comparison criteria themselves may be
different. See page 191 for an example of different sorting criteria that have the same type. If the
criteria are different, they will also get assigned or swapped.

Table 6.23. Assignment Operations of Sets and Multisets

Operation Effect

cl = c2 Assigns all elements of c2 to c1
cl.swap (c2) Swaps the data of c1 and c2
swap (cl,c2) Same (as global function)

Iterator Functions

Sets and multisets do not provide direct element access, so you have to use iterators. Sets and
multisets provide the usual member functions for iterators (Table 6.24).

Table 6.24. Iterator Operations of Sets and Multisets
Operation |Effect

c.begin() |Returns a bidirectional iterator for the first element (elements are considered
const)

c.end() Returns a bidirectional iterator for the position after the last element (elements are
considered const)

c.rbegin () |Returns a reverse iterator for the first element of a reverse iteration

c.rend () Returns a reverse iterator for the position after the last element of a reverse
iteration

As with all associative container classes, the iterators are bidirectional iterators (see Section
7.2.4). Thus, you can't use them in algorithms that are provided only for random access iterators
(such as algorithms for sorting or random shuffling).

More important is the constraint that, from an iterator's point of view, all elements are considered
constant. This is necessary to ensure that you can't compromise the order of the elements by
changing their values. However, as a result you can't call any modifying algorithm on the
elements of a set or multiset. For example, you can't call the remove () algorithm to remove
elements because it "removes" by overwriting "removed" elements the with following arguments

dyne-book 162

The C++ Standard Library

(see Section 5.6.2, for a detailed discussion of this problem). To remove elements in sets and
multisets, you can use only member functions provided by the container.

Inserting and Removing Elements

Table 6.25 shows the operations provided for sets and multisets to insert and remove elements.
As usual by using the STL, you must ensure that the arguments are valid. lterators must refer to
valid positions, the beginning of a range must have a position that is not behind the end, and you
must not try to remove an element from an empty container.

Inserting and removing happens faster if, when working with multiple elements, you use a single
call for all elements rather than multiple calls.

Table 6.25. Insert and Remove Operations of Sets and Multisets
Operation Effect

c. insert (elem) |Inserts a copy of elem and returns the position of the new element and,
for sets, whether it succeeded

c. insert (pos, Inserts a copy of elem and returns the position of the new element (pos

elem) is used as a hint pointing to where the insert should start the search)

c. insert Inserts a copy of all elements of the range [beg, end) (returns nothing)

(beg, end)

c. erase(elem) Removes all elements with value elem and returns the number of
removed elements

c. erase (pos) Removes the element at iterator position pos (returns nothing)

c. Removes all elements of the range [beg, end) (returns nothing)

erase (beg, end)

c. clear() Removes all elements (makes the container empty)

Note that the return types of the insert functions differ as follows:
e Sets provide the following interface:

pair<iterator,bool> insert (const value type& elem);
iterator insert (iterator pos_hint,
const value typeé& elem);

e Multisets provide the following interface:

iterator insert (const value typeé& elem);
iterator insert (iterator pos_hint,
const value typeé& elem);

The difference in return types results because multisets allows duplicates, whereas sets do not.
Thus, the insertion of an element might fail for a set if it already contains an element with the
same value. Therefore, the return type of a set returns two values by using a pair structure
(pair is discussed in Section 4.1,):

1. The member second of the pair structure returns whether the insertion was successful.
2. The member first of the pair structure returns the position of the newly inserted
element or the position of the still existing element.

dyne-book 163

The C++ Standard Library

In all other cases, the functions return the position of the new element (or of the existing element
if the set contains an element with the same value already).

The following example shows how to use this interface to insert a new element into a set. It tries
to insert the element with value 3.3 into the set c:

std: :set<double> c;

if (c.insert(3.3) .second) {
std::cout << "3.3 inserted" << std::endl;
}
else {
std::cout << "3.3 already exists" << std::endl;
}

If you also want to process the new or old positions, the code gets more complicated:

//define variable for return value of insert ()
std::pair<std::set<float>::iterator,bool> status;

//insert value and assign return value
status = c.insert (value);

//process return value
if (status.second) {

std::cout << value << " inserted as element "
}
else {
std::cout << value << " already exists as element "

}
std::cout << std::distance(c.begin() .status.first) + 1
<< std::endl;

The output of two calls of this sequence might be as follows:

8.9 inserted as element 4
7.7 already exists as element 3

Note that the return types of the insert functions with an additional position parameter don't differ.
These functions return a single iterator for both sets and multisets. However, these functions
have the same effect as the functions without the position parameter. They differ only in their
performance. You can pass an iterator position, but this position is processed as a hint to
optimize performance. In fact, if the element gets inserted right after the position that is passed as
the first argument, the time complexity changes from logarithmic to amortized constant
(complexity is discussed in Section 2.3,). The fact that the return type for the insert functions
with the additional position hint doesn't have the same difference as the insert functions without
the position hint ensures that you have one insert function that has the same interface for all
container types. In fact, this interface is used by general inserters. See Section 7.4.2, especially
page 275, for details about inserters. To remove an element that has a certain value, you simply
call erase () :

std::set<Elem> coll;

//remove all elements with passed value

dyne-book 164

The C++ Standard Library

coll.erase(value);

Unlike with lists, the erase () member function does not have the name remove () (see page
170 for a discussion of remove ()). It behaves differently because it returns the number of
removed elements. When called for sets, it returns only 0 or 1.

If a multiset contains duplicates, you can't use erase () to remove only the first element of these
duplicates. Instead, you can code as follows:

std: :multiset<Elem> coll;

//remove first element with passed value

std::multiset<Elem>::iterator pos;

pos = coll.find (elem);

if (pos !'= coll.end()) {
coll.erase(pos);

}

You should use the member function find () instead of the £ind () algorithm here because it is
faster (see the example on page 154).

Note that there is another inconsistency in return types here. That is, the return types of the
erase () functions differ between sequence and associative containers as follows:

1. Sequence containers provide the following erase () member functions:

iterator erase(iterator pos);
iterator erase(iterator beg, iterator end);

2. Associative containers provide the following erase () member functions:

void erase (iterator pos);
void erase (iterator beg, iterator end);

The reason for this difference is performance. It might cost time to find and return the successor
in an associative container because the container is implemented as a binary tree. However, as a
result, to write generic code for all containers you must ignore the return value.

6.5.3 Exception Handling

Sets and multisets are node-based containers, so any failure to construct a node simply leaves
the container as it was. Furthermore, because destructors in general don't throw, removing a
node can't fail.

However, for multiple-element insert operations, the need to keep elements sorted makes full
recovery from throws impractical. Thus, all single-element insert operations support commit-or-
rollback behavior. That is, they either succeed or they have no effect. In addition, it is guaranteed
that all multiple-element delete operations always succeed. If copying/assigning the comparison
criterion may throw, swap () may throw.

See Section 5.11.2, for a general discussion of exceptions handling in the STL and Section
6.10.10, for a list of all container operations that give special guarantees in face of exceptions.

dyne-book 165

The C++ Standard Library

6.5.4 Examples of Using Sets and Multisets

The following program demonstrates some abilities of sets* :

[20] The definition of distance () has changed, so in older STL versions you must include the file
distance.hpp, which is mentioned on page 263.

// cont/setl.cpp

#include <iostream>
#include <set>
using namespace std;

int main ()

{

/*type of the collection:
*-no duplicates
*-elements are integral values
*~descending order
*/
typedef set<int,greater<int> > IntSet;

IntSet colll; // empty set container

//insert elements in random order

colll.insert (4);

colll.insert (3

colll.insert(

colll.insert (
(
(
(

) ;
) ;
) ;
).
)
)

’

colll.insert
colll.insert
colll.insert

’

5
1
6
2
5

’

//iterate over all elements and print them

IntSet::iterator pos;

for (pos = colll.begin(); pos != colll.end(); ++pos) {
cout << *pos << ' ';

}

cout << endl;

//insert 4 again and process return value
pair<IntSet::iterator,bool> status = colll.insert (4);
if (status.second) {
cout << "4 inserted as element "
<< distance (colll.begin(),status. first) + 1
<< endl;
}
else {
cout << "4 already exists" << endl;
}

//assign elements to another set with ascending order
set<int> coll2(colll.begin(),
colll.end());

dyne-book 166

The C++ Standard Library

//print all elements of the copy

copy (coll2.begin(), coll2.end(),
ostream iterator<int>(cout,”™ "));

cout << endl;

//remove all elements up to element with value 3
coll2.erase (coll2.begin(), coll2.find(3));

//remove all elements with value 5

int num;
num = coll2.erase (5);
cout << num << " element(s) removed" << endl;

//print all elements

copy (coll2.begin(), coll2.end(),
ostream iterator<int>(cout," "));

cout << endl;

At first, the type definition

typedef set<int,greater<int> > IntSet;

defines a short type name for a set of ints with descending order. After an empty set is created,
several elements are inserted by using insert () :

IntSet colll;

colll.insert (4);

Note that the element with value 5 is inserted twice. However, the second insertion is ignored
because sets do not allow duplicates.

After printing all elements, the program tries again to insert the element 4. This time it processes
the return values of insert () as discussed on page 183.

The statement

set<int> coll2(colll.begin(), colll. end());

creates a new set of ints with ascending order and initializes it with the elements of the old
set.[24]

(2] This statement requires several new language features; namely, member templates and default template
arguments. If your system does not provide them, you must program as follows:

set<int, less<int> > coll2;
copy (colll.begin(), colll. end(),
inserter (coll2,coll2.begin()));

dyne-book 167

The C++ Standard Library

Both containers have different sorting criteria, so their types differ and you can't assign or
compare them directly. However, you can use algorithms, which in general are able to handle
different container types as long as the element types are equal or convertible.

The statement

coll2.erase (coll2.begin(), coll2.find(3));

removes all elements up to the element with value 3. Note that the element with value 3 is the
end of the range, so that it is not removed.

Lastly, all elements with value 5 are removed:

int num;
num = coll2.erase (5);
cout << num << " element (s) removed" << endl;

The output of the whole program is as follows:

654321

4 already exists
123456

1 element (s) removed
34 6

For multisets, the same program looks a bit differently and produces different results:
// cont/msetl.cpp

#include <iostream>
#include <set>
using namespace std;

int main ()

{

/*type of the collection:

*—duplicates allowed

*—elements are integral values
*-descending order

*/
typedef multiset<int,greater<int> > IntSet;

IntSet colll, // empty multiset container

//insert elements in random order

colll.insert (4);

colll.insert(

colll.insert (

colll.insert(
(
(

’

)
).
) ;
).
)

colll.insert
colll.insert

dyne-book 168

The C++ Standard Library

colll.insert (5);

//iterate over all elements and print them

IntSet::iterator pos;

for (pos = colll.begin(); pos != colll.end(); ++pos) {
cout << *pos << ' ';

}

cout << endl;

//insert 4 again and process return value
IntSet::iterator ipos = colll.insert(4);
cout << "4 inserted as element "
<< distance (colll.begin(),ipos) + 1
<< endl;

//assign elements to another multiset with ascending order
multiset<int> coll2(colll.begin(),
colll.end());

//print all elements of the copy

copy (coll2.begin(), coll2.end(),
ostream iterator<int>(cout," "));

cout << endl;

//remove all elements up to element with value 3
coll2.erase (coll2.begin(), coll2.find(3));

//remove all elements with value 5

int num;
num = coll2.erase (5);
cout << num << " element (s) removed" << endl;

//print all elements

copy (coll2.begin(), coll2.end(),
ostream iterator<int>(cout," "));

cout << endl;

In all cases type set was changed to multiset. In addition, the processing of the return value
of insert () looks different:

IntSet::iterator ipos = colll.insert (4);
cout << "4 inserted as element "
<< distance (colll.begin(),ipos) + 1
<< endl;

Because multisets may contain duplicates, the insertion can fail only if an exception gets thrown.
Thus, the return type is only the iterator position of the new element.

The output of the program changed as follows:
6 554321

4 inserted as element 5
123445056

dyne-book 169

The C++ Standard Library

2 element (s) removed
344 6

6.5.5 Example of Specifying the Sorting Criterion at Runtime

Normally you define the sorting criterion as part of the type, either by passing it as a second
template argument or by using the default sorting criterion Less<>. However, sometimes you
must process the sorting criterion at runtime, or you may need different sorting criteria with the
same data type. In this case, you need a special type for the sorting criterion — one that lets you
pass your sorting details at runtime. The following example program demonstrates how to do this:

// cont/setcmp.cpp

#include <iostream>
finclude <set>

#include "print.hpp"
using namespace std;

//type for sorting criterion
template <class T>
class RuntimeCmp {
public:
enum cmp mode {normal, reverse};
private:
cmp_mode mode;
public:
//constructor for sorting criterion
//-default criterion uses value normal
RuntimeCmp (cmp mode m=normal) : mode (m) {
}
//comparision of elements
bool operator() (const T& tl, const T& t2) const {
return mode == normal ? tl < t2 : t2 < tl;
}
//comparision of sorting criteria
bool operator== (const RuntimeCmpé& rc) {
return mode == rc.mode;
}
}:

//type of a set that uses this sorting criterion
typedef set<int,RuntimeCmp<int> > IntSet;

//forward declaration
void fill (IntSeté& set);

int main ()
{
//create, fill, and print set with normal element order
//-uses default sorting criterion
IntSet colll;
£fill (colll);
PRINT_ELEMENTS (colll, "colll: ");

dyne-book 170

The C++ Standard Library

//create sorting criterion with reverse element order
RuntimeCmp<int> reverse order (RuntimeCmp<int>::reverse);

//create, fill, and print set with reverse element order
IntSet coll2(reverse order);

fill(coll2);

PRINT_ELEMENTS (coll2, "coll2: ");

//assign elements AND sorting criterion
colll = coll2;

colll.insert (3);

PRINT ELEMENTS (colll, "colll: ");

//just to make sure...

if (colll.value comp() == coll2.value comp()) {
cout << "colll and coll2 have same sorting criterion"
<< endl;
}
else {
cout << "colll and coll2 have different sorting criterion"
<< endl;

}

void fill (IntSeté& set)
{
//fil]l insert elements 1in random order
set.insert (4);
set.insert (
set.insert (
set.insert (
set.insert (
(
(

’

set.insert
set.insert

In this program, RuntimeCmp<> is a simple template that provides the general ability to specify,
at runtime, the sorting criterion for any type. Its default constructor sorts in ascending order using
the default value normal. It also is possible to pass RuntimeCmp<>::reverse to sort in
descending order.

The output of the program is as follows:

colll: 1 2 45 6 7

coll2: 7 6 54 21

colll: 7 6 54 3 21

colll and coll2 have same sorting criterion

Note that col111 and col12 have the same type, which is used in £i11 (), for example. Note
also that the assignment operator assigns the elements and the sorting criterion (otherwise an
assignment would be an easy way to compromise the sorting criterion).

6.6 Maps and Multimaps

dyne-book 171

The C++ Standard Library

Map and multimap containers are containers that manage key/value pairs as elements. They sort
their elements automatically according to a certain sorting criterion that is used for the actual key.
The difference between the two is that multimaps allow duplicates, whereas maps do not (Figure
6.8).

Figure 6.8. Maps and Multimaps

Map: Multimap:

To use a map or multimap, you must include the header file <map>P2 :

[22] | the original STL, the header file for maps was <map.h>, and for multimaps it was <multimap.h>.

#include <map>

There, the type is defined as a class template inside namespace std:

namespace std {
template <class Key, class T,
class Compare = less<Key>,
class Allocator = allocator<pair<const Key,T> > >
class map;

template <class Key, class T,

class Compare = less<Key>,

class Allocator = allocator<pair<const Key,T> > >
class multimap;

The first template argument is the type of the element's key, and the second template argument is
the type of the element's value. The elements of a map or multimap may have any types Key and
T that meet the following two requirements:

1. The key/value pair must be assignable and copyable.
2. The key must be comparable with the sorting criterion.

The optional third template argument defines the sorting criterion. Like sets, this sorting criterion
must define a "strict weak ordering" (see page 176). The elements are sorted according to their
keys, thus the value doesn't matter for the order of the elements. The sorting criterion is also used
to check equality; that is, two elements are equal if neither key is less than the other. If a special

dyne-book 172

The C++ Standard Library

sorting criterion is not passed, the default criterion 1ess is used. The function object 1ess sorts
the elements by comparing them with operator < (see page 305 for details about 1ess).[*!

231 systems without support for default template parameters, the third argument typically is mandatory.

The optional fourth template parameter defines the memory model (see Chapter 15). The
default memory model is the model allocator, which is provided by the C++ standard
library.24

241 systems without support for default template parameters, the fourth argument typically is missing.

6.6.1 Abilities of Maps and Multimaps

Like all standardized associative container classes, maps and multimaps are usually
implemented as balanced binary trees (Figure 6.9). The standard does not specify this but it
follows from the complexity of the map and multimap operations. In fact, sets, multisets, maps,
and multimaps typically use the same internal data type. So, you could consider sets and
multisets as special maps and multimaps, respectively, for which the value and the key of the
elements are the same objects. Thus, maps and multimaps have all the abilities and operations of
sets and multisets. Some minor differences exist, however. First, their elements are key/value
pairs. In addition, maps can be used as associative arrays.

Figure 6.9. Internal Structure of Maps and Multimaps

L
ol <

")

El
wl—|<
i

A
:

i

o S

Maps and multimaps sort their elements automatically according to the element's keys. Thus they
have good performance when searching for elements that have a certain key. Searching for
elements that have a certain value promotes bad performance. Automatic sorting imposes an
important constraint on maps and multimaps: You may not change the key of an element directly
because this might compromise the correct order. To modify the key of an element, you must
remove the element that has the old key and insert a new element that has the new key and the
old value (see page 201 for details). As a consequence, from the iterator's point of view, the

dyne-book 173

The C++ Standard Library

element's key is constant. However, a direct modification of the value of the element is still

possible (provided the type of the value is not constant).

6.6.2 Map and Multimap Operations

Create, Copy, and Destroy Operations

Table 6.26 lists the constructors and destructors of maps and multimaps.

Table 6.26. Constructors and Destructors of Maps and Multimaps

Operation Effect

map c Creates an empty map/multimap without any elements

map c (op) Creates an empty map/multimap that uses op as the sorting criterion

map cl (c2) Creates a copy of another map/multimap of the same type (all elements are
copied)

map c (beg,end) |Creates a map/multimap initialized by the elements of the range
[beg, end)

map Creates a map/multimap with the sorting criterion op initialized by the

¢ (beg, end, op) elements of the range [beg, end)

c. ‘map () Destroys all elements and frees the memory

Here, map may be one of the following:

Map Effect

map<Key,Elem> A map that sorts keys with 1ess<> (operator <)
map<Key,Elem, Op> A map that sorts keys with Op
multimap<Key,Elem> A multimap that sorts keys with 1ess<> (operator <)
multimap<Key,Elem, Op> A multimap that sorts keys with 0p

You can define the sorting criterion in two ways:
1. As a template parameter.

For example!®! ;

[25] Note that you have to put a space between the two ">" characters. ">>" would be parsed as
shift operator, which would result in a syntax error.

std: :map<float,std::string, std::greater<float> > coll;

In this case, the sorting criterion is part of the type. Thus, the type system ensures that
only containers with the same sorting criterion can be combined. This is the usual way to
specify the sorting criterion. To be more precise, the third parameter is the type of the
sorting criterion. The concrete sorting criterion is the function object that gets created with
the container. To do this, the constructor of the container calls the default constructor of
the type of the sorting criterion. See page 294 for an example that uses a user-defined

sorting criterion.

2. As a constructor parameter.

dyne-book

174

The C++ Standard Library

In this case you might have a type for several sorting criteria, and the initial value or state
of the sorting criteria might differ. This is useful when processing the sorting criterion at
runtime, or when sorting criteria are needed that are different but of the same data type.
A typical example is specifying the sorting criterion for string keys at runtime. See page
213 for a complete example.

If no special sorting criterion is passed, the default sorting criterion, function object 1ess<>, is
used. which sorts the elements by using operator <. [2¢]

(261 systems without support for default template parameters, you typically must always pass the sorting
criterion as follows:

map<float,string,less<float> > coll;

You should make a type definition to avoid the boring repetition of the type whenever it is used:

typedef std::map<std::string,float,std::greater<string> >
StringFloatMap;

StringFloatMap coll;
The constructor for the beginning and the end of a range could be used to initialize the container
with elements from containers that have other types, from arrays, or from the standard input. See

Section 6.1.2, for details. However, the elements are key/value pairs, so you must ensure that
the elements from the source range have or are convertible into type pair<key,value>.

Nonmodifying and Special Search Operations

Maps and multimaps provide the usual nonmodifying operations — those that query size aspects
and make comparisons (Table 6.27).

Table 6.27. Nonmodifying Operations of Maps and Multimaps

Operation Effect

c.size() Returns the actual number of elements

c.empty () Returns whether the container is empty (equivalent to size () ==0, but might
be faster)

c.max_size () |Returns the maximum number of elements possible

cl == c2 Returns whether c1 is equal to c2

cl !=c2 Returns whether c1 is not equal to c2 (equivalentto ! (c1==c2))

cl < c2? Returns whether c1 is less than c2

cl > c2 Returns whether c1 is greater than c2 c2<c1)

cl <= c2 Returns whether c1 is less than or equal to c2 (equivalentto ! (c2<c1))

cl >= c2 Returns whether c1 is greater than or equal to c2 (equivalentto ! (c1<c2))

Comparisons are provided only for containers of the same type. Thus, the key, the value, and the
sorting criterion must be of the same type. Otherwise, a type error occurs at compile time. For
example:

std::map<float,std::string> cl; // sorting criterion: less<>

dyne-book 175

The C++ Standard Library

std::map<float,std::string, std::greater<float> > c2;
if (¢l == c2) { // ERROR: different types

}

To check whether a container is less than another container is done by a lexicographical
comparison (see page 360). To compare containers of different types (different sorting criterion),
you must use the comparing algorithms of Section 9.5.4.

Special Search Operations

Like sets and multisets, maps and multimaps provide special search member functions that
perform better because of their internal tree structure (Table 6.28).

The find () member function searches for the first element that has the appropriate key and
returns its iterator position. If no such element is found, £ind () returns end () of the container.
You can't use the £ind () member function to search for an element that has a certain value.
Instead, you have to use a general algorithm such as the find if () algorithm, or program an
explicit loop. Here is an example of a simple loop that does something with each element that has
a certain value:

std::multimap<std::string, float> coll;

//do something with all elements having a certain value
std::multimap<std::string,float>::iterator pos;
for (pos = coll.begin(); pos != coll.end(); ++pos) {
if (pos->second == value) {
do_something () ;

}

Table 6.28. Special Search Operations of Maps and Multimaps

Operation Effect
count (key) Returns the number of elements with key key
find (key) Returns the position of the first element with key key or end ()

lower_bound (key) Returns the first position where an element with key key would get
inserted (the first element with key >= key)

upper_bound (key) |Returns the last position where an element with key key would get inserted
(the first element with key > key)

equal_range (key) |Returns the first and last positions where elements with key key would get
inserted (the range of elements with key == key)

Be careful when you want to use such a loop to remove elements. It might happen that you saw
off the branch on which you are sitting. See page 204 for details about this issue.

Using the find if () algorithm to search for an element that has a certain value is even more
complicated than writing a loop because you have to provide a function object that compares the
value of an element with a certain value. See page 211 for an example.

dyne-book 176

The C++ Standard Library

The lower bound(), upper bound(), and equal range () functions behave as they do
for sets (see page 180), except that the elements are key/value pairs.

Assignments
Maps and multimaps provide only the fundamental assignment operations that all containers

provide (Table 6.29). See page 147 for more details.
Table 6.29. Assignment Operations of Maps and Multimaps

Operation Effect

cl = c2 Assigns all elements of c2 c1
cl.swap(c2) Swaps the data of c1 and c2
swap (cl,c2) Same (as global function)

For these operations both containers must have the same type. In particular, the type of the
comparison criteria must be the same, although the comparison criteria themselves may be
different. See page 213 for an example of different sorting criteria that have the same type. If the
criteria are different, they also get assigned or swapped.

Iterator Functions and Element Access

Maps and multimaps do not provide direct element access, so the usual way to access elements
is via iterators. An exception to that rule is that maps provide the subscript operator to access
elements directly. This is covered in Section 6.6.3. Table 6.30 lists the usual member
functions for iterators that maps and multimaps provide.

Table 6.30. Iterator Operations of Maps and Multimaps
Operation |Effect
c.begin() |Returns a bidirectional iterator for the first element (keys are considered const)

c.end() Returns a bidirectional iterator for the position after the last element (keys are
considered const)

c.rbegin () |Returns a reverse iterator for the first element of a reverse iteration

c.rend () |Returns a reverse iterator for the position after the last element of a reverse
iteration

As for all associative container classes, the iterators are bidirectional (see Section 7.2.4,).
Thus, you can't use them in algorithms that are provided only for random access iterators (such
as algorithms for sorting or random shuffling).

More important is the constraint that the key of all elements inside a map and a multimap is
considered to be constant. Thus, the type of the elements is pair<const Key, T>. This is
also necessary to ensure that you can't compromise the order of the elements by changing their
keys. However, you can't call any modifying algorithm if the destination is a map or multimap. For
example, you can't call the remove () algorithm to remove elements because it "removes" only
by overwriting "removed" elements with the following arguments (see Section 5.6.2, for a
detailed discussion of this problem). To remove elements in maps and multimaps, you can use
only member functions provided by the container.

The following is an example of the use of iterators:

std::map<std::string,float> coll;

dyne-book 177

The C++ Standard Library

std::map<std::string,float>::iterator pos;

for (pos
std:

Here, the iterator pos iterates through the sequence of string/float pairs. The expression

= coll.begin(); pos != coll.end(); ++pos) {
:cout << "key: " << pos->first << "\t"
<< "value: " << pos->second << std::endl;

pos->first

yields the key of the actual element, whereas the expression

pos—->second

yields the value of the actual element.’22

[27]

pos-—

>first is a shortcut for (*pos) . first. Some old libraries might only provide the latter.

Trying to change the value of the key results in an error:

pos->first = "hello"; // ERROR at compile time

However, changing the value of the element is no problem (as long as the type of the value is not

constant):

pos->second = 13.5; // OK

To change the key of an element, you have only one choice: You must replace the old element

with a new element that has the same value. Here is a generic function that does this:

// cont/newkey.hpp

namespace MyLib {
template <class Cont>
inline
bool replace key (Conté& c,

const typename Cont::key type& old key,
const typename Cont::key typeé& new key)

typename Cont::iterator pos;

pos = c.find(old key);

if (pos != c.end()) {
//insert new element with value of old element
c.insert (typename Cont::value type (new_ key,

pos—->second)) ;

//remove old element
c.erase (pos) ;
return true;
}
else {
//key not found

dyne-book

178

The C++ Standard Library

return false;

The insert () and erase () member functions are discussed in the next subsection.
To use this generic function you simply must pass the container the old key and the new key. For
example:

std::map<std::string,float> coll;

MyLib::replace key(coll,"old key","new key");

It works the same way for multimaps.
Note that maps provide a more convenient way to modify the key of an element. Instead of calling
replace key (), you can simply write the following:

//insert new element with value of old element
coll["new key"] = coll["old key"];

//remove old element

coll.erase ("old key");

See Section 6.6.3, for details about the use of the subscript operator with maps.
Inserting and Removing Elements

Table 6.31 shows the operations provided for maps and multimaps to insert and remove
elements.

Table 6.31. Insert and Remove Operations of Maps and Multimaps
Operation Effect

Inserts a copy of elem and returns the position of the new element and,

. t (el .
c.insert (elem) for maps, whether it succeeded

Inserts a copy of elem and returns the position of the new element (pos
is used as a hint pointing to where the insert should start the search)

c.insert (beg,end) |Inserts a copy of all elements of the range [beg, end)(returns nothing)

c.insert (pos,elem)

Removes all elements with value elem and returns the number of
removed elements

c.erase (pos) Removes the element at iterator position pos (returns nothing)

c.erase (elem)

c.erase (beg,end) Removes all elements of the range [beg, end)(returns nothing)
c.clear () Removes all elements (makes the container empty)

The remarks on page 182 regarding sets and multisets apply here. In particular, the return types
of these operations have the same differences as they do for sets and multisets. However, note
that the elements here are key/value pairs. So, the use is getting a bit more complicated.

To insert a key/value pair, you must keep in mind that inside maps and multimaps the key is
considered to be constant. You either must provide the correct type or you need to provide
implicit or explicit type conversions. There are three different ways to pass a value into a map:

dyne-book 179

The C++ Standard Library

1. Usevalue_type

To avoid implicit type conversion, you could pass the correct type explicitly by using
value type, which is provided as a type definition by the container type. For example:

std: :map<std::string, float> coll;

coll.insert (std::map<std::string, float>::value type("otto",
22.3));

2. Usepair<>
Another way is to use pair<> directly. For example:

std: :map<std::string,float> coll;
//use implicit conversion:
coll.insert (std::pair<std::string, float>("otto",22.3));

//use no implicit conversion:
coll.insert (std::pair<const std::string,float>("otto",22.3));

In the first insert () statement the type is not quite right, so it is converted into the real
element type. For this to happen, the insert () member function is defined as a
member template.®!

(28] | your system does not provide member templates, you must pass an element with the
correct type. This usually requires that you make the type conversions explicit.

3. Usemake pair()

Probably the most convenient way is to use the make pair () function (see page 36).
This function produces a pair object that contains the two values passed as arguments:

std: :map<std::string,float> coll;

coll.insert (std::make pair("otto",22.3));

Again, the necessary type conversions are performed by the insert () member
template.

Here is a simple example of the insertion of an element into a map that also checks whether the
insertion was successful:

std::map<std::string,float> coll;

dyne-book 180

The C++ Standard Library

if (coll.insert (std::make pair("otto",22.3)) .second) {
std::cout << "OK, could insert otto/22.3" << std::endl;
}
else {
std::cout << "Oops, could not insert otto/22.3 "
<< "(key otto already exists)" << std::endl;

See page 182 for a discussion regarding the return values of the insert () functions and more
examples that also apply to maps. Note, again, that maps provide a more convenient way to
insert (and set) elements with the subscript operator. This is discussed in Section 6.6.3.

To remove an element that has a certain value, you simply call erase () :
std: :map<std::string, float> coll;

//remove all elements with the passed key
coll.erase (key);

This version of erase () returns the number of removed elements. When called for maps, the
return value of erase () canonlybe 0 or 1.

If a multimap contains duplicates, you can't use erase () to remove only the first element of
these duplicates. Instead, you could code as follows:

typedef multimap<string.float> StringFloatMMap;
StringFloatMMap coll;

//remove first element with passed key
StringFloatMMap: :iterator pos;
pos = coll.find(key);
if (pos != coll.end()) {
coll.erase (pos);

You should use the member function find () instead of the find () algorithm here because it is
faster (see an example with the find () algorithm on page 154). However, you can't use the
find () member functions to remove elements that have a certain value (instead of a certain
key). See page 198 for a detailed discussion of this topic.

When removing elements, be careful not to saw off the branch on which you are sitting. There is
a big danger that will you remove an element to which your iterator is referring. For example:

typedef std::map<std::string,float> StringFloatMap;
StringFloatMap coll;
StringFloatMap::iterator pos;

for (pos = coll.begin(); pos != coll.end(); ++pos) {

if (pos->second == value) {
coll. erase (pos); // RUNTIME ERROR !!!

dyne-book 181

The C++ Standard Library

Calling erase () for the element to which you are referring with pos invalidates pos as an
iterator of col1. Thus, if you use pos after removing its element without any reinitialization, then
all bets are off. In fact, calling ++pos results in undefined behavior.

A solution would be easy if erase () always returned the value of the following element:

typedef std::map<std::string,float> StringFloatMap;
StringFloatMap coll;
StringFloatMap::iterator pos;

for (pos = coll.begin(); pos != coll.end();) |

if (pos->second == value) {
pos = coll.erase(pos); // would be fine, but COMPILE TIME
ERROR
}
else {
++pos;

}

It was a design decision not to provide this trait, because if not needed, it costs unnecessary time.
| don't agree with this decision however, because code is getting more error prone and
complicated (and may cost even more in terms of time).

Here is an example of the correct way to remove elements to which an iterator refers:

typedef std::map<std::string,float> StringFloatMap;
StringFloatMap coll;
StringFloatMap::iterator pos, tmp pos;

//remove all elements having a certain value
for (pos = c.begin(); pos != c.end();) |
if (pos->second == value) {
c.erase (pos+t+) ;
}
else {
++pos;

}

Note that pos++ increments pos so that it refers to the next element but yields a copy of its
original value. Thus, pos doesn't refer to the element that is removed when erase () is called.

6.6.3 Using Maps as Associative Arrays

Associative containers don't typically provide abilities for direct element access. Instead, you must
use iterators. For maps, however, there is an exception to this rule. Nonconstant maps provide a
subscript operator for direct element access (Table 6.32). However, the index of the subscript
operator is not the integral position of the element. Instead, it is the key that is used to identify the
element. This means that the index may have any type rather than only an integral type. Such an
interface is the interface of a so-called associative array.

dyne-book 182

The C++ Standard Library

Table 6.32. Direct Element Access of Maps with Operator []
Operation Effect
m[key] Returns a reference to the value of the element with key key Inserts an element with
key if it does not yet exist

The type of the index is not the only difference from ordinary arrays. In addition, you can't have a
wrong index. If you use a key as the index, for which no element yet exists, a new element gets
inserted into the map automatically. The value of the new element is initialized by the default
constructor of its type. Thus, to use this feature you can't use a value type that has no default

constructor. Note that the fundamental data types provide a default constructor that initializes
their values to zero (see page 14).

This behavior of an associative array has both advantages and disadvantages:

e The advantage is that you can insert new elements into a map with a more convenient

interface.
For example:
std: :map<std::string, float> coll; // empty collection

/*insert "otto"/7.7 as key/value pair
*—first it inserts "otto"/float ()
*-then it assigns 7.7
*/

coll["otto"] = 7.7;

The statement

coll["otto"] = 7.7;

is processed here as follows:

1. Process coll["otto"] expression:
= If an element with key "otto" exists, the expression returns the value of
the element by reference.
= I, as in this example, no element with key "otto" exists, the expression
inserts a new element automatically with "otto" as key and the value of
the default constructor of the value type as the element value. It then
returns a reference to that new value of the new element.
2. Assignvalue 7.7:
» The second part of the statement assigns 7. 7 to the value of the new or
existing element.

The map then contains an element with key "otto" and value 7.7.

e The disadvantage is that you might insert new elements by accident or mistake. For
example, the following statement does something you probably hadn't intended or
expected:

dyne-book 183

The C++ Standard Library

std::cout << coll ["ottto"];

6.6.4 Exception Handling

It inserts a new element with key "ottto" and prints its value, which is 0 by default.
However, it should have generated an error message telling you that you wrote "otto"
incorrectly.

Note, too, that this way of inserting elements is slower than the usual way for maps,
which is described on page 202. This is because the new value is first initialized by the
default value of its type, which is then overwritten by the correct value.

Maps and multimaps provide the same behavior as sets and multisets with respect to exception
safety. This behavior is mentioned on page 185.

6.6.5 Examples of Using Maps and Multimaps

Using a Map as an Associative Array

The following example shows the use of a map as an associative array. The map is used as a
stock chart. The elements of the map are pairs in which the key is the name of the stock and the
value is its price:

// cont/mapl.cpp

#include <iostream>
#include <map>
#include <string>
using namespace std;

int main ()

{

/*create map/associative array
*-keys are strings
*-values are floats
*/
typedef map<string, float> StringFloatMap;

StringFloatMap stocks; // create empty container

//insert some elements

stocks ["BASEF"] = 369.50;
stocks ["VW"] = 413.50;
stocks["Daimler"] = 819.00;
stocks ["BMW"] = 834.00;
stocks["Siemens"] = 842.20;

//print all elements
StringFloatMap::iterator pos;

for (pos = stocks.begin(); pos != stocks.end(); ++pos)
cout << "stock: " << pos->first << "\t"
<< "price: " << pos->second << endl;

{

dyne-book

184

The C++ Standard Library

}

cout << endl;

//boom (all prices doubled)
for (pos = stocks.begin(); pos != stocks.end();
pos—->second *= 2;

}

//print all elements

for (pos = stocks.begin(); pos != stocks.end();
cout << "stock: " << pos->first << "\t"
<< "price: " << pos->second << endl;

}

cout << endl;

/*rename key from "VW" to "Volkswagen"
*-only provided by exchanging element
*/

stocks["Volkswagen"] = stocks["VW"];

stocks.erase ("VW") ;

//print all elements

for (pos = stocks.begin(); pos != stocks.end();
cout << "stock: " << pos->first << "\t"
<< "price: " << pos->second << endl;

The program has the following output:

stock: BASF price: 369.5
stock: BMW price: 834
stock: Daimler price: 819
stock: Siemens price: 842.2
stock: VW price: 413.5

stock: BASF price: 739
stock: BMW price: 1668
stock: Daimler price: 1638
stock: Siemens price: 1684.4
stock: VW price: 827

stock: BASF price: 739
stock: BMW price: 1668
stock: Daimler price: 1638

stock: Siemens price: 1684.4
stock: Volkswagen price: 827

Using a Multimap as a Dictionary

The following example shows how to use a multimap as a dictionary:

// cont/mmapl.cpp

dyne-book

185

The C++ Standard Library

#include <iostream>
#include <map>
#include <string>
#include <iomanip>
using namespace std;

int

{

main ()

//define multimap type as string/string dictionary
typedef multimap<string,string> StrStrMMap;

//create empty dictionary
StrStrMMap dict;

//insert some elements in random order
dict.insert (make pair("day","Tag"));

dict.insert (make pair("strange","fremd"));
dict.insert (make pair("car","Auto"));
dict.insert (make pair("smart","elegant"));

dict.insert
dict.insert

make pair
make pair

"trait", "Merkmal"));
"Strange", "Seltsam")) ;
"smart","raffiniert"));

,\,\,\,\,\,\,\,\
Py

dict.insert (make pair
dict.insert (make pair ("smart","klug"));
dict.insert (make pair("clever","raffiniert"));

//print all elements
StrStrMMap::iterator pos;
cout.setf (ios::left, ios::adjustfield);

cout << ' ' << setw(10) << "english "
<< "german " << endl;

cout << setfil('-') << setw(20) << ""
<< setfil(' ') << endl;

for (pos = dict.begin(); pos != dict.end(); ++pos)
cout << ' ' << setw(1l0) << pos>first.c str()

<< pos->second << endl;

}
cout << endl;

//print all values for key "smart"
string word("smart");

cout << word << ": " << endl;
for (pos = dict.lower bound(word) ;
pos != dict.upper bound(word); ++pos) {
cout << " " << pos->second << endl;

}

//print all keys for value "raffiniert"

word = ("raffiniert");
cout << word << ": " << endl;
for (pos = dict.begin(); pos != dict.end(); ++pos)
if (pos->second == word) {
cout << " " << pos->first << endl;

dyne-book

186

The C++ Standard Library

The program has the following output:

english german

car Auto
clever raffiniert
day Tag
smart elegant
smart raffiniert
smart klug
strange fremd
strange seltsam
trait Merkmal
smart:
elegant
raffiniert
klug
raffiniert:
clever
smart

Find Elements with Certain Values

The following example shows how to use the global £ind if () algorithm to find an element with
a certain value:

// cont/mapfind.cpp

#include <iostream>
#include <algorithm>
#include <map>

using namespace std;

/*function object to check the value of a map element
*/
template <class K, class V>
class value_equals {
private:
V value;
public:
//constructor (initialize value to compare with)
value equals (const V& v)
value (v) {

}

//comparison
bool operator () (pair<const K, V> elem) ({
return elem.second == value;

}
}i

int main ()

dyne-book 187

The C++ Standard Library

typedef map<float, float> FloatFloatMap;
FloatFloatMap coll;
FloatFloatMap::iterator pos;

//fill container

//search an element with key 3.0
pos = coll.find (3.0); // logarithmic

complexity

if (pos != coll.end()) {
cout << pos->first << ": "
<< pos->second << endl;

}

//search an element with value 3.0

pos = find if (coll.begin(),coll.end(), // linear complexity
value equals<float, float>(3.0));
if (pos !'= coll.end()) {

cout << pos->first << ": "
<< pos->second << endl;

The output of the program is as follows:

N

6.6.6 Example with Maps, Strings, and Sorting Criterion at Runtime

Here is another example. It is for advanced programmers rather than STL beginners. You can
take it as an example of both the power and the snags of the STL. In particular, this example
demonstrates the following techniques:

How to use maps

How to write and use function objects

How to define a sorting criterion at runtime

How to compare strings in a case-insensitive way

// cont/mapcmp.cpp

#include <iostream>
#include <iomanip>
#include <map>

dyne-book 188

The C++ Standard Library

#include <string>
#include <algorithm>
using namespace std;

/*function object to compare strings
*—allows you to set the comparison criterion at runtime
*-allows you to compare case insensitive
*/

class RuntimeStringCmp {
public:

//constants for the comparison criterion
enum cmp mode {normal, nocase};
private:
//actual comparison mode
const cmp mode mode;

//auxiliary function to compare case insensitive
static bool nocase compare (char cl, char c2)
{

return toupper (cl) < toupper(c2);

}

public:
//constructor: initializes the comparison criterion
RuntimeStringCmp (cmp mode m=normal) : mode (m) {

}

//the comparison
bool operator () (const stringé& sl, const string& s2) const {
if (mode == normal) {
return sl<s2;
}
else {
return lexicographical compare (sl.begin(), sl.end(),
s2.begin(), s2.end(),
nocase_compare) ;

s

/*container type:

*-map with

* -string keys
-string values
-the special comparison object type

*
*
*/
typedef map<string,string,RuntimeStringCmp> StringStringMap;

//function that fills and prints such containers
void fillAndPrint (StringStringMap& coll);

int main ()

{
//create a container with the default comparison criterion
StringStringMap colll;
fillAndPrint (colll);

dyne-book 189

The C++ Standard Library

//create an object for case-insensitive comparisons
RuntimeStringCmp ignorecase (RuntimeStringCmp::nocase);

//create a container with the case-insensitive comparisons

criterion

StringStringMap coll?2

(ignorecase) ;

fillAndPrint (coll2);

}

void fillAndPrint (StringStringMapé& coll)

{

//fil]l insert elements in random order

}

coll["Deutschland"] = "Germany";
coll["deutsch"] = "German";
coll["Haken"] = "snag";
coll["arbeiten"] = "work";
coll["Hund"] = "dog";

coll["gehen"] = "go";
coll["Unternehmen"] = "enterprise";
coll ["unternehmen"] = "undertake";
coll["gehen"] = "walk";

coll ["Bestatter"] = "undertaker";

//print elements
StringStringMap::iterator pos;
cout.setf (ios::1left, ios::adjustfield);
for (pos=coll.begin(); pos!=coll.end(); ++pos) {
cout << setw(l5) << pos->first.c str() << " "
<< pos->second << endl;
}

cout << endl;

main () creates two containers and calls fi11AndPrint () for them. £i11AndPrint () fills the
containers with the same elements and prints the contents of them. However, the containers have
two different sorting criteria:

1. coll1l uses the default function object of type RuntimeStringCmp, which compares

the elements by using operator <.

2. coll2 uses a function object of type RuntimeStringCmp that is initialized by value
nocase Of class RuntimeStringCmp. nocase forces this function object to sort
strings in a case-insensitive way.

The program has the following output:

Bestatter undertaker
Deutschland Germany
Haken snag

Hund dog
Unternehmen enterprise
arbeiten work
deutsch German
gehen walk
unternehmen undertake
arbeiten work

dyne-book

190

The C++ Standard Library

Bestatter undertaker
deutsch German
Deutschland Germany
gehen walk

Haken snag

Hund dog
Unternehmen undertake

The first block of the output prints the contents of the first container that compares with operator
<. The output starts with all uppercase keys followed by all lowercase keys.

The second block prints all case-insensitive items, so the order changed. But note, the second
block has one item less. This is because the uppercase word "Unternehmen" is, from a case-
insensitive point of view, equal to the lowercase word "unternehmen, "*! and we use a map
that does not allow duplicates according to its comparison criterion. Unfortunately the result is a
mess because the German key that is the translation for "enterprise" got the value "undertake."
So probably a multimap should be used here. This makes sense because a multimap is the
typical container for dictionaries.

1291 |n German all nouns are written with an initial capital letter whereas all verbs are written in lowercase
letters.

6.7 Other STL Containers

The STL is a framework. In addition to the standard container classes it allows you to use other
data structures as containers. You can use strings or ordinary arrays as STL containers, or you
can write and use special containers that meet special needs. Doing this has the advantage that
you can benefit from algorithms, such as sorting or merging, for your own type. Such a framework
is a good example of the Open Closed Principle™® : open for extension; closed for modification.

[301 | first heard of the Open Closed Principle from Robert C. Martin, who himself heard it from Bertrand
Meyer.

There are three different approaches to making containers "STL-able":
1. The invasive approach®"
1311 |nstead of invasive and noninvasive sometime the terms intrusive and nonintrusive are used.
You simply provide the interface that ah STL container requires. In particular, you need

the usual member functions of containers such as begin () and end () . This approach
is invasive because it requires that a container be written in a certain way.

2. The noninvasive approach(®!!

You write or provide special iterators that are used as an interface between the
algorithms and special containers. This approach is noninvasive. All it requires is the
ability to step through all of the elements of a container, an ability that any container
provides in some way.

3. The wrapper approach

dyne-book 191

The C++ Standard Library

Combining the two previous approaches, you write a wrapper class that encapsulates
any data structure with an STL container-like interface.

This subsection first discusses strings as a standard container, which is an example of the
invasive approach. It then covers an important standard container that uses the noninvasive
approach: ordinary arrays. However, you can also use the wrapper approach to access data of an
ordinary array. Finally, this section subdiscusses some aspects of an important container that is
not part of the standard: a hash table.

Whoever wants to write an STL container might also support the ability to get parameterized for
different allocators. The C++ standard library provides some special functions and classes for
programming with allocators and uninitialized memory. See Section 15.2, for details.

6.7.1 Strings as STL Containers

The string classes of the C++ standard library are an example of the invasive approach of writing
STL containers (string classes are introduced and discussed in Chapter 11). Strings can be
considered containers of characters. The characters inside the string build a sequence over
which you can iterate to process the individual characters. Thus, the standard string classes
provide the container interface of the STL. They provide the begin () and end() member
functions, which return random access iterators to iterate over a string. They also provide some
operations for iterators and iterator adapters. For example, push back () is provided to enable
the use of back inserters.

Note that string processing from the STL's point of view is a bit unusual. This is because normally
you process strings as a whole object (you pass, copy, or assign strings). However, when
individual character processing is of interest, the ability to use STL algorithms might be helpful.
For example, you could read the characters with istream iterators or you could transform string
characters, such as make them uppercase or lowercase. In addition, by using STL algorithms you
can use a special comparison criterion for strings. The standard string interface does not provide
that ability.

Section 11.2.13, which is part of the string chapter, discusses the STL aspects of strings in
more detail and gives examples.

6.7.2 Ordinary Arrays as STL Containers

You can use ordinary arrays as STL containers. However, ordinary arrays are not classes, so
they don't provide member functions such as begin() and end(), and you can't define
member functions for them. Here, either the noninvasive approach or the wrapper approach must
be used.

Using Ordinary Arrays Directly

Using the noninvasive approach is simple. You only need objects that are able to iterate over the
elements of an array by using the STL iterator interface. Actually, such iterators already exist:
ordinary pointers. It was a design decision of the STL to use the pointer interface for iterators so
that you could use ordinary pointers as iterators. This again shows the generic concept of pure
abstraction: Anything that behaves like an iterator is an iterator. In fact, pointers are random
access iterators (see Section 7.2.5,). The following example demonstrates how to use ordinary
arrays as STL containers:

// cont/arrayl.cpp

dyne-book 192

The C++ Standard Library

#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;

int main ()
{
int coll([] = { 5, 6, 2, 4, 1, 3 };

//square all elements

transform (coll, coll+é, // first source
coll, // second source
coll, // destination
multiplies<int>()); // operation

//sort beginning with the second element
sort (coll+l, coll+6);

//print all elements
copy (coll, coll+e,

ostream iterator<int>(cout," "));
cout << endl;

You must be careful to pass the correct end of the array, as it is done here by using col1+6.
And, as usual, you have to make sure that the end of the range is the position after the last
element.

The output of the program is as follows:

251 4 9 16 36

Additional examples are on page 382 and page 421.
An Array Wrapper

In his book The C++ Programming Language, 3rd edition, Bjarne Stroustrup introduces a useful
wrapper class for ordinary arrays. It is safer and has no worse performance than an ordinary
array. It also is a good example of a user-defined STL container. This container uses the wrapper
approach because it offers the usual container interface as a wrapper around the array.

The class carray (the name is short for "C array" or for "constant size array") is defined as
followsB2 :

1321 The original array wrapper class by Bjarne Stroustrup is called c_array and is defined in Section 17.5.4
of his book. | have modified it slightly for this book.

// cont/carray.hpp

#include <cstddef>

template<class T, size_t thesize>
class carray {

dyne-book 193

The C++ Standard Library

private:
T v[thesize]; // fixed-size
public:
//type definitions
typedef T value type;
typedef T* iterator;

array of elements of type

typedef const T* const iterator;

typedef T& reference;

typedef const T& const reference;

typedef size t size type;

typedef ptrdiff t difference type;

//iterator support
iterator begin() { return v; }
const iterator begin() const {

return v; }

iterator end() { return v+thesize; }
const iterator end() const { return v+thesize; }

//direct element access
reference operator([] (size t i)

const reference operator[] (size t i)

//size is constant

{ return vI[i]; }

size type size() const { return thesize; }
size type max size() const { return thesize; }

//conversion to ordinary array
T* as_array() { return v; }

bi

Here is an example of the usage of the carray class:

// cont/carrayl.cpp

#include <algorithm>
#include <functional>
#include "carray.hpp"
#include "print.hpp"
using namespace std;

int main ()

{

carray<int, 10> a;

for (unsigned i=0; i<a.size();
al[i] = 1i+1;

}

PRINT_ELEMENTS(a);

reverse (a.begin(),a.end());
PRINT_ELEMENTS(a);

transform (a. begin(),a.end(),
a. begin(),
negate<int>());

++1) {

// source
// destination
// operation

const { return vI[i];

}

dyne-book

194

The C++ Standard Library

PRINT ELEMENTS (a) ;

As you can see, you can use the general container interface operations (begin (), end(), and
operator [1) to manipulate the container directly. Therefore, you can also use different
operations that call begin() and end(), such as algorithms and the auxiliary function
PRINT ELEMENTS (), which is introduced on page 118.

The output of the program is as follows:

12345678910
10987654321
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

6.7.3 Hash Tables

One important data structure for collections is not part of the C++ standard library: the hash table.
There were suggestions to incorporate hash tables into the standard; however, they were not part
of the original STL and the committee decided that the proposal for their inclusion came too late.
(At some point you have to stop introducing features and focus on the details. Otherwise, you
never finish the work.)

Nevertheless, inside the C++ community several implementations of hash tables are available.
Libraries typically provide four kinds of hash tables: hash set, hash multiset,
hash map, and hash multimap. According to the other associative containers, the multi
versions allow duplicates and maps contain key/value pairs. Bjarne Stroustrup discusses
hash map as an example of a supplemented STL container in detail in Section 17.6 of his book
The C+ + Programming Language, 3rd edition. For a concrete implementation of hash containers,
see, for example, the "STLport" (http://www.stlport.org/). Note that different implementations
may differ in details because hash containers are not yet standardized.

6.8 Implementing Reference Semantics

In general, STL container classes provide value semantics and not reference semantics. Thus,
they create internal copies of the elements they contain and return copies of those elements.
Section 5.10.2, discusses the pros and cons of this approach and touches on its
consequences. To summarize, if you want reference semantics in STL containers (whether
because copying elements is expensive or because identical elements will be shared by different
collections), you should use a smart pointer class that avoids possible errors. Here is one
possible solution to the problem. It uses an auxiliary smart pointer class that enables reference
counting for the objects to which the pointers refert! :

[33] Many thanks to Greg Colvin and Beman Dawes for feedback on implementing this class.

// cont/countptr.hpp

#ifndef COUNTED PTR HPP
#define COUNTED PTR HPP

/*class for counted reference semantics

dyne-book 195

The C++ Standard Library

*—deletes the object to which it refers when the last CountedPtr
* that refers to it is destroyed
*/

template <class T>

class CountedPtr {

private:
T* ptr; // pointer to the value
long* count; // shared number of owners
public:

//initialize pointer with existing pointer
//-requires that the pointer p 1is a return value of new
explicit CountedPtr (T* p=0)
ptr(p), count(new long(l)) {
}

//copy pointer (one more owner)
CountedPtr (const CountedPtr<T>& p) throw()
ptr(p.ptr), count(p.count) {
++*count;

}

//destructor (delete value if this was the last owner)
~CountedPtr () throw() {
dispose();

}

//assignment (unshare old and share new value)
CountedPtr<T>& operator= (const CountedPtr<T>& p) throw() {
if (this !'= &p) |
dispose();
ptr = p.ptr;
count = p.count;
++*count;
}

return *this;

}

//access the value to which the pointer refers
T& operator* () const throw() {
return *ptr;
}
T* operator->() const throw() {
return ptr;

}

private:
void dispose () {
if (-—*count == 0) {
delete count;
delete ptr;

}s

#endif /*COUNTED PTR HPP*/

dyne-book 196

The C++ Standard Library

This class resembles the standard auto ptr class (see Section 4.2,). It expects that the
values with which the smart pointers are initialized are return values of operator new. However,
unlike auto ptr, it allows you to copy these smart pointers while retaining the validity of the
original and the copy. Only if the last smart pointer to the object gets destroyed does the value to
which it refers get deleted.

You could improve the class to allow automatic type conversions or the ability to transfer the
ownership away from the smart pointers to the caller.

The following program demonstrates how to use this class:
// cont/refseml.cpp

#include <iostream>
#include <list>
#include <deque>
#include <algorithm>
#include "countptr.hpp"
using namespace std;

void printCountedPtr (CountedPtr<int> elem)
{
cout << *elem << ' ';

}

int main ()

{
//array of integers (to share in different containers)
static int values[] ={3, 5, 9, 1,06,4};

//two different collections
typedef CountedPtr<int> IntPtr;
deque<IntPtr> colll;
list<IntPtr> coll2;

/*insert shared objects into the collections

*—same order in colll

*—-reverse order in coll2

*/

for (int 1=0; i<sizeof (values)/sizeof (values[0]); ++1) {
IntPtr ptr(new int (values[i])):;
colll.push back(ptr);
coll2.push front (ptr);

}

//print contents of both collections
for each (colll.begin(), colll.end(),
printCountedPtr) ;

cout << endl;

for each (coll2.begin(), coll2.end(),
printCountedPtr) ;

cout << endl << endl;

/*modify values at different places
*-square third value in colll

dyne-book 197

The C++ Standard Library

*-negate first value in colll
*-set first value in coll2 to O

*/

*colll[2] *= *colll[2];
(**colll.begin()) *= -1;
(**coll2.begin()) = 0;

//print contents of both collections again

for each (colll.begin(), colll.end(),
printCountedPtr) ;

cout << endl;

for each (coll2.begin(), coll2.end(),
printCountedPtr) ;

cout << endl;

The program has the following output:
3591604
461953

-3581 160

0 61815 -3

Note that if you call an auxiliary function that saves one element of the collections (an IntPtr)
somewhere else, the value to which it refers stays valid even if the collections get destroyed or all
of their elements are removed.

See the Boost repository for C++ libraries at http://www.boost.org/ for a collection of different
smart pointer classes as an extension of the C++ standard library. (Class CountedPtr<> will
probably be called shared ptr<>.)

6.9 When to Use which Container

The C++ standard library provides different container types with different abilities. The question
now is: When do you use which container type? Table 6.9 provides an overview. However, it
contains general statements that might not fit in reality. For example, if you manage only a few
elements you can ignore the complexity because short element processing with linear complexity
is better than long element processing with logarithmic complexity.

As a supplement to the table, the following rules of thumb might help:

e By default, you should use a vector. It has the simplest internal data structure and
provides random access. Thus, data access is convenient and flexible, and data
processing is often fast enough.

e If you insert and/or remove elements often at the beginning and the end of a sequence,
you should use a deque. You should also use a deque if it is important that the amount of
internal memory used by the container shrinks when elements are removed. Also,
because a vector usually uses one block of memory for its elements, a deque might be
able to contain more elements because it uses several blocks.

e If you insert, remove, and move elements often in the middle of a container, consider
using a list. Lists provide special member functions to move elements from one container
to another in constant time. Note, however, that because a list provides no random

dyne-book 198

The C++ Standard Library

access, you might suffer significant performance penalties on access to elements inside
the list if you only have the beginning of the list.

Like all node-based containers, a list doesn't invalidate iterators that refer to elements, as
long as those elements are part of the container. Vectors invalidate all of their iterators,
pointers, and references whenever they exceed their capacity, and part of their iterators,
pointers, and references on insertions and deletions. Deques invalidate iterators,
pointers, and references when they change their size, respectively.

e If you need a container that handles exceptions in a way that each operation either
succeeds or has no effect, you should use either a list (without calling assignment
operations and sort () and, if comparing the elements may throw, without calling merge
(), remove(), remove if (), and unique(); see page 172) or an associative
container (without calling the multiple-element insert operations and, if copying/assigning
the comparison criterion may throw, without calling swap ()). See Section 5.11.2, for a
general discussion of exception handling in the STL and Section 6.10.10, for a table of
all container operations with special guarantees in face of exceptions.

e If you often need to search for elements according to a certain criterion, use a set or a
multiset that sorts elements according to this sorting criterion. Keep in mind that the
logarithmic complexity involved in sorting 1,000 elements is in principle ten times better
than that with linear complexity. In this case, the typical advantages of binary trees apply.

A hash table commonly provides five to ten times faster lookup than a binary tree. So if a
hash container is available, you might consider using it even though hash tables are not
standardized. However, hash containers have no ordering, so if you need to rely on
element order they're no good. Because they are not part of the C++ standard library, you
should have the source code to stay portable.

e To process key/value pairs, use a map or a multimap (or the hash version, if available).
e If you need an associative array, use a map.
e If you need a dictionary, use a multimap.

Table 6.33. Overview of Container Abilities

Vector Deque List Set Multiset Map Multimap
Typical internal Dynamic |Array of |Doubly Binary tree |Binary tree |Binary tree |Binary tree
data structure array arrays linked list
Elements Value Value Value Value Value Key/value Key/value
pair pair
Duplicates Yes Yes Yes No Yes Not for the Yes
allowed key
Random access |Yes Yes No No No With key No
available
Iterator category |Random |Random |Bidirectional Bidirectional Bidirectional Bidirectional Bidirectional
access access (element |(element |(key (key
constant) |constant) |constant) |constant)
Search/find Slow Slow Very slow |Fast Fast Fast for key |Fast for key
elements
Inserting/removing At the end |At the Anywhere |— — — —
of elements is fast beginning
and the
end

dyne-book 199

The C++ Standard Library

Inserting/removing On Always Never Never

invalidates reallocation

iterators,

references,

pointers

Frees memory for Never Sometimes Always Always

removed elements

Allows memory |Yes No — —

reservation

Transaction safe |Push/pop Push/pop |All except |All except

(success or no at the end |at the sort () and multiple-

effect) beginning |assignments element
and the insertions
end

Never

Always

All except
multiple-
element
insertions

Never

Always

All except
multiple-
element
insertions

Never

Always

All except
multiple-
element
insertions

A problem that is not easy to solve is how to sort objects according to two different sorting criteria.
For example, you might have to keep elements in an order provided by the user while providing
search capabilities according to another criterion. And as in databases, you need fast access
regarding two or more different criteria. In this case, you could probably use two sets or two maps
that share the same objects with different sorting criteria. However, having objects in two

collections is a special issue, which is covered in Section 6.8.

The automatic sorting of associative containers does not mean that these containers perform
better when sorting is needed. This is because an associative container sorts each time a new
element gets inserted. An often faster way is to use a sequence container and to sort all elements
after they are all inserted by using one of the several sort algorithms (see Section 9.2.2).

The following are two simple programs that sort all strings read from the standard input and print

them without duplicates by using two different containers:
1. Using a set:

// cont/sortset.cpp

#include <iostream>
#include <string>
#include <algorithm>
#include <set>

using namespace std;

int main ()

{

/*create a string set

*-initialized by all words from standard input

*/

set<string> coll((istream iterator<string>(cin)),

(istream iterator<string>()));

//print all elements
copy (coll.begin(), coll.end(),

ostream iterator<string>(cout,

"\n"));

dyne-book

200

The C++ Standard Library

2. Using a vector:

// cont/sortvec.cpp

#include <iostream>
#include <string>
#include <algorithm>
#include <vector>
using namespace std;

int main ()
{
/*create a string vector
*-initialized by all words from standard input
*/
vector<string> coll((istream iterator<string>(cin)),
(istream iterator<string>()));

//sort elements
sort (coll.begin(), coll.end());

//print all elements ignoring subsequent duplicates
unique copy (coll.begin(), coll.end(),
ostream iterator<string>(cout, "\n"));

When | tried both programs with about 150,000 strings on my system, the vector version was
approximately 10% faster. Inserting a call of reserve () made the vector version 5% faster.
Allowing duplicates (using a multiset instead of a set and calling copy () instead of
unique copy () respectively) changed things dramatically: The vector version was more than
40% faster! These measurements are not representative; however, they do show that it is often
worth trying different ways of processing elements.

In practice, predicting which container type is the best is often difficult. The big advantage of the
STL is that you can try different versions without much effort. The major work— implementing the
different data structures and algorithms— is done. You have only to combine them in a way that
is best for you.

6.10 Container Types and Members in Detail

This section discusses the different STL containers and presents all of the operations that STL
containers provide. The types and members are grouped by functionality. For each type and
operation this section describes the signature, the behavior, and the container types that provide
it. Possible containers are vector, deques, lists, sets, multisets, maps, multimaps, and strings. In
the following subsections, container means the container type that provides the member.

6.10.1 Type Definitions
container::value_type

e The type of elements.

dyne-book 201

The C++ Standard Library

e For sets and multisets, it is constant.
e For maps and multimaps, itis pair <const key-type, value-type>

e Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::reference

e The type of element references.
e Typically: container::value types.
e Forvector<bool>, itis an auxiliary class (see page 158).

e Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container:.const_reference

e The type of constant element references.
e Typically: const container::value typeé&.
e Forvector<bool>, itisbool.

e Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::iterator

e The type of iterators.

e Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container:.const_iterator

e The type of constant iterators.

e Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::reverse_iterator

e The type of reverse iterators.

e Provided by vectors, deques, lists, sets, multisets, maps, and multimaps.

container::.const_reverse_iterator

e The type of constant reverse iterators.

e Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::size_type

e The unsigned integral type for size values.

e Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::difference_type

e The signed integral type for difference values.

e Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::key_type

dyne-book

202

The C++ Standard Library

e The type of the key of the elements for associative containers.
e For sets and multisets, it is equivalent to value type.
e Provided by sets, multisets, maps, and multimaps.

container::mapped_type

e The type of the value of the elements of associative containers.
e Provided by maps and multimaps.

container::key_compare

e The type of the comparison criterion of associative containers.
e Provided by sets, multisets, maps, and multimaps.

container::value_compare

e The type of the comparison criterion for the whole element type.

e For sets and multisets, it is equivalent to key compare.

e For maps and multimaps, it is an auxiliary class for a comparison criterion that compares
only the key part of two elements.

e Provided by sets, multisets, maps, and multimaps.

container::allocator_type

e The type of the allocator.
e Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

6.10.2 Create, Copy, and Destroy Operations

Containers provide the following constructors and destructors. Also, most constructors allow you
to pass an allocator as an additional argument (see Section 6.10.9).
container::container ()

e The default constructor.
e Creates a new empty container.
e Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

explicit container::.container (const CompFuncés 0Op)

e Creates a new empty container with op used as the sorting criterion (see page 191 and
page 213 for examples).

e The sorting criterion must define a "strict weak ordering" (see page 176).

e Provided by sets, multisets, maps, and multimaps.

explicit container::container (const container&, c)

The copy constructor.

Creates a new container as a copy of the existing container c.

Calls the copy constructor for every element in c.

Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

dyne-book 203

The C++ Standard Library

explicit container::container (size type num)

e Creates a container with num elements.
e The elements are created with their default constructor.
e Provided by vectors, deques, and lists.

container::container (size type num, const Té& value)

e Creates a container with num elements.

e The elements are created as copies of value.
e T is the type of the container elements.

e For strings, value is not passed by reference.
e Provided by vectors, deques, lists, and strings.

container::container (InputIterator beg, InputIterator end)

o Creates a container that is initialized by all elements of the range [beg,end).

e This function is a member template (see page 11). Thus, the elements of the source
range may have any type that is convertible to the element type of the container.

e Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::container (InputIterator beg, InputIterator end, const CompFuncé& Op)

¢ Creates a container that has the sorting criterion op and is initialized by all elements of
the range [beg,end).

e This function is a member template (see page 11). Thus, the elements of the source
range may have any type that is convertible to the element type of the container.

e The sorting criterion must define a "strict weak ordering” (see page 176).

e Provided by sets, multisets, maps, and multimaps.

container::"container ()

The destructor.

Removes all elements and frees the memory.

Calls the destructor for every element.

Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

6.10.3 Nonmodifying Operations
Size Operations
size type container::size () const

e Returns the actual number of elements.

e To check whether the container is empty (contains no elements), you should use
empty () because it may be faster.

e Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

bool container::empty () const

dyne-book 204

The C++ Standard Library

e Returns whether the container is empty (contains no elements).
e ltis equivalent to container:: size ()==0, but it may be faster (especially for lists).
e Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

size type container:max_size () const

e Returns the maximum number of elements a container may contain.

e This is a technical value that may depend on the memory model of the container. In
particular, because vectors usually use one memory segment, this value may be less
than for other containers.

e Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

Capacity Operations
size type container::capacity () const

e Returns the number of elements the container may contain without reallocation.
e Provided by vectors and strings.

void container::reserve (size type num)

¢ Reserves internal memory for at least num elements.

e If numis less than the actual capacity, this call has no effect on vectors and is a
nonbinding shrink request for strings.

e To shrink the capacity of vectors, see the example on page 149.

e Each reallocation invalidates all references, pointers, and iterators, and takes some time.
Thus reserve () can increase speed and keep references, pointers, and iterators valid

(see page 149 for details).
e Provided by vectors and strings.

Comparison Operations
bool comparison (const container& c1, const container&, c2)

e Returns the result of the comparison of two containers of same type.
e comparison might be any of the following:

operator =
operator !
operator <
operator >
operator <=
operator >=

e Two containers are equal if they have the same number of elements and contain the

same elements in the same order (all comparisons of two corresponding elements have

to yield true).
e To check whether a container is less than another container, the containers are

compared lexicographically. See the description of the 1exicographical compare ()

algorithm on page 360 for a description of lexicographical comparison.

dyne-book

205

The C++ Standard Library

e Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.
Special Nonmodifying Operations for Associative Containers

The member functions mentioned here are special implementations of corresponding STL
algorithms that are discussed in Section 9.5 and Section 9.9. They provide better performance
because they rely on the fact that the elements of associative containers are sorted. In fact, they
provide logarithmic complexity instead of linear complexity. For example, to search for one of
1,000 elements, no more than ten comparisons on average are needed (see Section 2.3).

size type container::count (const T& value) const

e Returns the number of elements that are equal to value.
e This is the special version of the count () algorithm discussed on page 338.
e T is the type of the sorted value:
o For sets and multisets, it is the type of the elements.
o For maps and multimaps, it is the type of the keys.
e Complexity: linear.
e Provided by sets, multisets, maps, and multimaps.

iterator container:find (const T& value)
const iterator container:find (const Ts& value) const

e Both return the position of the first element that has a value equal to value.
e They return end () if no element is found.
e These are the special versions of the find () algorithm discussed on page 341.
e T is the type of the sorted value:
o For sets and multisets, it is the type of the elements.
o For maps and multimaps, it is the type of the keys.
e Complexity: logarithmic.
e Provided by sets, multisets, maps, and multimaps.

iterator container::lower_bound (const Ts value)
const_iterator container:lower_bound (const Té& value) const

e Both return the first position where a copy of value would get inserted according to the
sorting criterion.
e They return end () if no such element is found.
e The return value is the position of the first element that has a value less than or equal to
value (which might be end ()).
e These are the special versions of the lower bound () algorithm discussed on page
413.
e T is the type of the sorted value:
o For sets and multisets, it is the type of the elements.
o For maps and multimaps, it is the type of the keys.
e Complexity: logarithmic.
e Provided by sets, multisets, maps, and multimaps.

iterator container::upper_bound (const Té& value)
const_iterator container::upper_bound (const T& value) const

dyne-book 206

The C++ Standard Library

e Both return the last position where a copy of value would get inserted according to the
sorting criterion.
e They return end () if no such element is found.
e The return value is the position of the first element that has a value greater than value
(which might be end ()).
e These are the special versions of the upper bound () algorithm discussed on page
413.
e T is the type of the sorted value:
o For sets and multisets, it is the type of the elements.
o For maps and multimaps, it is the type of the keys.
e Complexity: logarithmic.
e Provided by sets, multisets, maps, and multimaps.

pair<iterator, iterator> container..equal_range (const Ts& value)
pair<const iterator,const iterator> container::equal_range (const Té& value)
const

e Both return a pair with the first and last positions where a copy of value would get
inserted according to the sorting criterion.

e The return value is the range of elements equal to value.

e They are equivalent to:

° make pair (lower bound(value),upper bound(value))

e These are the special versions of the equal range () algorithm discussed on page
415,
e T is the type of the sorted value:
o For sets and multisets, it is the type of the elements.
o For maps and multimaps, it is the type of the keys.
e Complexity: logarithmic.
e Provided by sets, multisets, maps, and multimaps.

key compare container::key_comp ()

o Returns the comparison criterion.
e Provided by sets, multisets, maps, and multimaps.

value compare container::value_comp ()
e Returns the object that is used as the comparison criterion.
e For sets and multisets, it is equivalent to key comp () .
e For maps and multimaps, it is an auxiliary class for a comparison criterion that compares

only the key part of two elements.
e Provided by sets, multisets, maps, and multimaps.

6.10.4 Assignments
containeré& container::operator= (const container& c)

e Assigns all elements of ¢; that is, it replaces all existing elements with copies of the
elements of c.

dyne-book 207

The C++ Standard Library

e The operator may call the assignment operator for elements that have been overwritten,
the copy constructor for appended elements, and the destructor of the element type for
removed elements.

e Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.
void container::assign (size type num, const T& value)

e Assigns num occurrences of value; that is, it replaces all existing elements by num copies
of value.

e T has to be the element type.
e Provided by vectors, deques,